一文搞定:LLM并发加速部署方案(llama.cpp、vllm、lightLLM、fastLLM)

llama.cpp、vllm、lightllm、fastllm四种框架的对比:

  • llama.cpp:基于C++,①请求槽,②动态批处理,③CPU/GPU混合推理

  • vllm:基于Python,①PagedAttention高效管理注意力KV内存,②连续动态批处理,③量化GPTQ/AWQ/SqueezeLLM等。

  • lightllm:基于Python,①三进程异步协作,②动态批处理,③FlashAttention,④TokenAttention,⑤高性能Router。

  • fastllm:基于C++,①ARM平台支持NEON指令集加速,②X86平台支持AVX指令集加速,③NVIDIA平台支持CUDA加速,与llama.cpp很类似。

llama.cpp

vllm

lightLLM

fastLLM

随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

以上的AI大模型学习资料,都已上传至CSDN,需要的小伙伴可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>好的,用户想了解不同LLM相关产品的分类及主要功能,具体提到了xinference、TGI、OpenLLM、SGI、TensorRT-LLM、OpenVino、llama.cppvLLM。我需要逐一整理每个工具的功能分类,并进行比较。 首先,我应该确定分类的标准。常见的分类维度可能包括推理框架、优化工具、部署工具、硬件支持等。例如,有些工具专注于模型推理加速,有些则提供部署解决方案。另外,硬件支持如CPU、GPU、特定厂商的硬件(如NVIDIA、Intel)也是一个重要分类点。 接下来,我需要逐个分析每个产品: 1. **Xinference**:这是由开源社区开发的项目,可能提供分布式推理部署功能。支持多种模型格式,适合企业级应用,可能属于部署框架。 2. **TGI (Text Generation Inference)**:Hugging Face推出的,专门用于文本生成的推理服务,支持大模型,优化了吞吐延迟,可能属于推理服务框架,支持GPU加速。 3. **OpenLLM**:允许运行管理开源LLM,提供APIWeb界面,属于部署框架,支持多种运行时。 4. **SGI (可能是某个专有解决方案,需要确认,但根据引用中的描述,可能属于推理加速框架,支持多节点部署)**。 5. **TensorRT-LLM**:NVIDIA的推理加速库,针对其GPU优化,属于优化工具,提升推理性能。 6. **OpenVINO**:Intel的工具,优化模型在Intel硬件上的性能,属于优化工具,支持CPU、集成显卡等。 7. **llama.cpp**:专注于在CPU上运行LLM,通过量化优化,适合资源受限环境,属于推理框架。 8. **vLLM**:专注于吞吐量优化,支持连续批处理PagedAttention,适合高并发场景,属于推理服务框架。 接下来需要验证每个工具的具体功能分类是否正确,可能需要查阅文档或相关资料。例如,确认SGI的具体功能,用户提供的引用中提到的SGI可能属于推理加速框架,支持多节点部署。此外,TensorRT-LLMOpenVINO分别针对NVIDIAIntel的硬件优化,属于硬件厂商的优化工具。 在分类时,可以将它们分为推理服务框架(如TGI、vLLM)、优化工具(TensorRT-LLM、OpenVINO)、部署框架(Xinference、OpenLLM)、CPU优化工具(llama.cpp)等。 需要确保每个产品的描述准确,例如vLLM的PagedAttention技术是否确实用于显存管理,TGI是否支持Hugging Face模型库等。同时,注意区分不同产品的侧重点,如部署、优化、硬件支持等。 最后,比较时可能需要制作表格或分点说明,突出各自的功能特点适用场景,帮助用户理解它们的区别选择依据。</think>以下是LLM相关产品的分类及功能比较,按核心功能划分为四类: ### 一、推理服务框架 1. **TGI (Text Generation Inference)** Hugging Face推出的文本生成推理服务,支持多GPU并行动态批处理,优化大模型推理效率。支持Hugging Face模型库,提供REST/WebSocket接口[^1]。 2. **vLLM** 面向高吞吐场景的推理框架,采用PagedAttention技术优化显存管理,支持连续批处理。适合需要快速响应大规模请求的场景,如在线聊天服务。 ### 二、模型优化工具 3. **TensorRT-LLM** NVIDIA推出的GPU推理加速库,针对其硬件优化内核计算显存分配,支持量化与并行策略配置,可集成到Triton推理服务器[^1]。 4. **OpenVINO** Intel开发的工具链,通过模型压缩算子融合优化CPU/集成显卡性能,支持边缘设备部署,适合Intel生态用户。 ### 三、部署框架 5. **Xinference** 支持分布式推理的部署框架,提供REST API模型管理界面,兼容GGML/ONNX/PyTorch格式,适合企业私有化部署。 6. **OpenLLM** 开源模型部署工具,内置LangChain集成Prompts监控,支持通过CLI快速启动模型服务,灵活性较高。 ### 四、CPU专用方案 7. **llama.cpp** 基于C++的轻量化推理框架,通过4-bit量化在CPU上运行LLM,依赖低且跨平台,适合本地开发或资源受限环境。 ### 对比表格 | 工具 | 核心功能 | 硬件支持 | 适用场景 | |-----------------|-------------------------|----------------|----------------------------| | TGI | 高并发文本生成 | NVIDIA GPU | 云端大模型服务 | | vLLM | 吞吐量优化 | NVIDIA GPU | 高负载API服务 | | TensorRT-LLM | GPU推理加速 | NVIDIA GPU | 企业级GPU集群部署 | | OpenVINO | Intel硬件优化 | Intel CPU/GPU | 边缘计算、物联网设备 | | Xinference | 分布式模型部署 | 多平台 | 企业私有化LLM服务 | | llama.cpp | CPU推理与量化 | CPU | 本地开发/低资源环境 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值