Deepseek能自动做账、出报表、写分析,财务人该何去何从?

一、Deepseek真的好用吗?

最近,小编也顺着潮流玩了一把,当然主要关注的财务税务方面。到底好不好用,我问了Deepseek一个问题:

图片 1.png

他的回答是:
图片 2.png

很明显我问的问题比较简单,但是他的回答却不简单,综合考虑各个因素的情况最后还给出了具体的示例。

所以小编觉得,Deepseek在逻辑方面是比较优秀的,如果财务人在工作中遇到了比较复杂的问题,可以让Deepseek提供一些思路。

再来看看网友的感受:
图片 3.png

图片 4.png

图片 5.png

你觉得Deepseek好用吗?

二、Deepseek对财务人到底有什么用?

小编认为,Deepseek对财务人最好的作用就是税务合规。

比如下面这个问题:
图片 6.png

财务人将自己放在税务稽查人员的身份上,探知企业的账务风险,对财务工作未尝不是一种帮助。财务人真的可以用起来!

其他Deepseek对财务人的帮助,小编整理了一些,供大家参考:
1、财务数据异常检测: 告知DeepSeek“作为财务人员,帮我分析这些财务数据中是否存在异常值,比如收入、成本、费用等数据的波动异常”,并上传相关数据文件,让其找出异常数据点和可能存在问题的科目。

2、财务指标计算与分析: 要求DeepSeek“计算这份财务报表的偿债能力、盈利能力、营运能力指标,并与行业平均水平对比分析”,以了解企业在行业中的财务地位和表现。

3、财务数据预测: 向DeepSeek输入历史财务数据,说“基于这些数据,预测未来几个月或季度的销售额、利润等关键财务指标”,为财务预算和决策提供参考。

风险评估与内部控制

4、财务报告生成: 对DeepSeek说“根据这些财务数据和业务情况,生成一份季度财务报告,包括文字分析和相关图表”,它可快速生成报告初稿,财务人再进行审核和完善。

5、与管理层沟通辅助: 准备与管理层沟通财务工作时,可先让DeepSeek“用通俗易懂的语言解释这些财务数据和财务指标的含义及对公司的影响”,以便更好地向管理层汇报。

三、Deepseek给财务人的建议

图片 7.png

财务职场人的优缺点:

1、优点:

1) 严谨细致: 财务工作对数据的准确性要求极高,财务人普遍具备严谨细致的工作态度,能够发现细微的差错。

2)责任心强: 财务工作关乎企业资金安全,财务人通常具有较强的责任心和职业道德。

3)学习能力强: 财务政策和法规更新迭代快,财务人需要不断学习新知识,以适应变化。

4)逻辑思维能力强: 财务工作需要处理大量数据,并进行逻辑分析,财务人普遍具备较强的逻辑思维能力。

2、缺点:

1)沟通能力欠缺: 部分财务人过于专注于数字,缺乏与其他部门沟通的意识,容易给人留下“高冷”的印象。

2)创新意识不足: 财务工作流程相对固定,部分财务人习惯于按部就班,缺乏创新意识和主动性。

3)风险意识过强: 财务人出于职业习惯,风险意识较强,有时会过于保守,错失发展机遇。

4)压力较大: 财务工作责任重大,加班加点也是常态,部分财务人面临着较大的工作压力。

四、2025年财务职场人生存建议:

1、拥抱数字化,提升数据分析能力: 随着财务数字化转型的加速,财务人需要掌握数据分析工具,从数据中挖掘价值,为企业决策提供支持。

2、拓展业务知识,成为业务合作伙伴: 财务人不能只局限于财务领域,需要了解企业业务流程,积极参与业务决策,成为业务部门的合作伙伴。

3、 提升沟通能力,打造个人影响力: 财务人需要加强与业务部门的沟通,用通俗易懂的语言解释财务数据,提升个人影响力。

4、保持学习热情,关注行业发展趋势: 财务政策和法规不断更新,财务人需要保持学习热情,关注行业发展趋势,不断提升自身专业能力。

5、注重身心健康,平衡工作与生活: 财务工作压力较大,财务人需要注重身心健康,找到适合自己的减压方式,平衡工作与生活。

总而言之,2025年的财务职场,机遇与挑战并存。财务人需要不断提升自身能力,积极拥抱变化,才能在激烈的竞争中立于不败之地。

五、Deepseek如此强大,财务人到底何去何从?

Deepseek横空出世,加上新《会计法》开始实施,财务人员的生存越来越难了。以下是给财务人的一些建议:

一、会计人员应注意以下几个重要方面:

1.要明确责任意识。 深刻理解单位负责人对本单位会计工作和会计资料的真实性、完整性负责,但自身也需坚守职业操守,确保所处理的会计事务合法合规。

2.严格遵循会计核算的规范。 杜绝伪造、变造会计凭证、会计账簿,不得编制虚假财务会计报告,也不能隐匿或故意销毁依法应当保存的会计凭证、会计账簿、财务会计报告等。

3.重视内部控制与监督。 积极参与单位内部会计监督工作,保障会计资料的真实与完整,防范财务风险。

4.关注会计信息化建设的要求。 提升自身在信息技术应用方面的能力,以适应新的会计工作模式。

5.要增强法律意识,清楚各类违法行为及其对应的严厉处罚,避免因无知或疏忽而陷入法律风险。

6.对于可能存在的财务造假等违规行为,要有坚决抵制的勇气和行动,维护自身合法权益,防止受到打击报复。

二、会计人员可以通过以下方式规避风险:

1、加强财会监督: 重点解决会计工作中的突出问题,旨在进一步加强财会监督,遏制财务造假行为,提高会计信息质量,以更好地维护社会公共利益。

2、细化违法行为并加大处罚力度: 对伪造、变造会计凭证、会计账簿,编制虚假财务会计报告,以及隐匿或故意销毁依法应当保存的会计凭证、会计账簿、财务会计报告等违法行为进行了详细规定;大幅提高罚款额度,例如,对于违法所得20万元以上的单位,可并处违法所得1倍以上10倍以下的罚款,财务造假的成本将随违法所得金额的升高而成倍增长。

3、 强化会计机构和会计人员的责任: 明确单位负责人对本单位的会计工作和会计资料的真实性、完整性负责,提升单位负责人对会计工作的重视程度;同时,保护会计人员合法权益,任何单位或者个人不得对依法履行职责、抵制违反本法规定行为的会计人员实行打击报复。

4、推动会计信息化建设: 适应信息技术的发展,虽然具体条款未详细列出,但将推动会计信息化建设,提高会计工作的效率和准确性。

5、其他方面: 如在总则中增加了禁止“篡改会计核算系统”的规定;明确了财务报告所指内容;删掉了原第三章的《公司、企业会计核算的特别规定》;增加了内部控制与监督的内容,要求单位加强内部会计监督,确保会计资料真实、完整;立法保障会计师事务所工作的正常开展,明确政府财政部门的监督职责;新增对举报人的保护条例,规定收到检举的部门、负责处理的部门应当为检举人保密,不得以任何方式泄露检举人个人信息或者检举材料等。

6、 会计法的具体规定可能会随着时间和经济环境的变化而有所调整,建议关注相关政府部门的最新动态和具体法规条文,以获取最准确的信息。如果你需要了解更详细的内容,可以查阅新《会计法》的具体条文或相关的专业解读。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

### 使用 DeepSeek 进行报表分析 DeepSeek 提供了一套强大的功能用于处理和分析各种类型的文档,包括但不限于Word文档、Excel格等。对于报表分析而言,可以利用其自然语言处理能力以及特定的功能模块实现自动化流程。 #### 读取解析报表数据 为了有效地执行报表分析,第一步是从源文件中提取结构化信息。这可以通过调用相应的API接口完成: ```python import deepseek as ds client = ds.Client(api_key='your_api_key') # 初始化客户端实例[^2] document = client.read_document('path_to_your_report.xlsx') dataframes = document.to_dataframes() # 将工作转换成Pandas DataFrame对象以便后续操作 ``` #### 应用预训练模型进行数据分析 一旦获得了可操作的数据集之后,则可以根据具体需求选择合适的算法来进行深入挖掘。例如,在财务报告场景下可能涉及到趋势预测、异常检测等内容;而在市场调研类材料里则更侧重于主题建模等方面的应用。 ```python analysis_results = [] for df in dataframes: result = client.analyze_dataframe(df, analysis_type="financial_trend") analysis_results.append(result) # 打印所有分析结果摘要 for res in analysis_results: print(res.summary()) ``` 上述代码片段展示了如何针对不同类型的业务逻辑定制专属的分析方法,最终获得易于理解的结果概述[^1]。 #### 输与可视化展示 最后一步就是把得到的信息整理好呈现给用户查看。除了简单的文本描述之外,还可以借助图等形式增强直观感受度。 ```python from matplotlib import pyplot as plt fig, ax = plt.subplots() ax.plot(analysis_results[0].get_series('revenue'), label='Revenue') plt.legend() plt.show() ``` 通过这种方式不仅可以快速定位关键指标变化情况,而且有助于发现潜在规律或问题所在之处[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值