国家级平台上线DeepSeek大模型

近期,DeepSeek走红出圈。

人民网消息显示,目前DeepSeek-R1、V3、Coder等系列模型已登陆国家超算互联网平台,用户无需下载到本地部署,即可在线完成DeepSeek系列模型的推理、部署及定制化训练与开发。其中,DeepSeek-R1模型提供一键推理服务,无需下载本地;还可根据私有化需求,引入专有数据,对模型进行定制化训练和开发。

随着DeepSeek多款大模型的走红,华为升腾、天数智芯、壁仞科技等多家国内外AI算力厂商近期均宣布适配DeepSeek。

然而,此次上线DeepSeek的国家超算互联网平台更加特殊。

首先,这是一个由科技部启动建设的国家级平台。

报道称,为促进超算算力一体化运营,打造国家算力底座,科技部于2023年启动了国家超算互联网部署工作,并成立工作推进组、总体专家组以及超算互联网联合体。彼时,工作推进组组长由时任科技部副部长相里斌担任,总体专家组组长由中科院院士钱德沛担任。

钱德沛介绍,该平台要用互联网的理念、思维,来建设国家的超算基础设施,是资源的深度整合。希望通过这样一个平台,使得更多用户在上面获得所需资源,避免自己去做技术性的开发工作。

资料显示,类似平台在国际上并未有先例,中国推动打造这一平台堪称“第一个吃螃蟹的人”。

其次,这是一个可统筹调度全国算力资源的平台。

随着技术发展,当下,算力在某种程度上已被视作新质“能源”,算力水平已经成为衡量一个国家科技与经济水平的重要指标。就全社会而言,各方主体对算力的储备、运用提出了更高要求。

国家超算互联网官网介绍,该平台致力于链接我国算力产业上下游及供需双方资源,实现超算、智算等全国算力资源的统筹与调度。

而这也正是该平台的建造初衷——打造国家算力底座的应有之义。

中国工程院院士李国杰解读称,算力共享是一件很复杂的技术,要将各个超算中心、云计算企业、科研机构等不同来源的算力、数据整合为统一平台。国家超算互联网是一个公益性很强的平台,它并非一家公司,并不完全以盈利为目的。正因此,这必须得到国家有关部门的大力支持,还需有一个真正为国分忧、事业心强的运行团队。

2024年4月平台正式上线。截至今年1月,超算互联网平台已连接中国14个省份的20多家超算和智算中心,入驻300多家算力服务商。

而今,随着国家超算互联网平台上线DeepSeek大模型,新华社、环球网等媒体就此点评称——

  • DeepSeek模型依托国家超算互联网平台“普惠易用、丰富好用”的算力服务,可以为海量中国企业与用户提供兼具高性能、高性价比、高可信的选择。

  • 当智能算力不足时,国家超算互联网所提供的丰富异构算力资源、跨域调度算力功能,确保推理任务流畅运行,为大规模AI应用提供可持续算力保障。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

### 部署DeepSeek大模型于Ollama平台 对于在Ollama平台上部署DeepSeek大模型的过程,虽然特定针对此操作的指导未直接提及[^1],但从相似的大规模语言模型(LLM)部署实践中可以推断出通用流程。通常情况下,在任何云服务平台上部署大型语言模型涉及几个关键步骤。 #### 准备工作环境 准备工作环境是成功部署的第一步。这包括但不限于获取必要的API密钥和其他认证凭证。例如,在阿里云上的实例部署页面中提到需填写服务的主要配置基本信息和服务对应的云资源以及NVIDIA NGC API Key的位置。尽管这是针对另一个平台的例子,但在大多数环境中准备类似的项目也是必需的。 #### 获取并加载预训练模型 为了使DeepSeek这样的大模型能够在目标平台上运行,首先需要确保能够访问该模型及其权重文件。如果是在像Ollama这样支持多种框架和工具链的平台上,则可能还需要考虑兼容性和优化问题。许多书籍提供了有关如何构建、调整乃至自定义这些复杂系统的深入见解,比如《动手学大模型Dive into LLMs》就涵盖了从基础架构搭建到高级调优技巧的内容[^2]。 #### 调整与测试 一旦完成了上述两个阶段的工作之后,接下来就是对已安装好的系统进行全面的功能验证和技术性能评估。通过一系列精心设计的压力测试案例来检验新上线的服务能否稳定可靠地响应请求是非常重要的一步。此外,《Building LLMs for Production: Enhancing LLM Abilities and Reliability with Prompting, Fine-Tuning, and RAG》一书中提到了利用提示工程(prompt engineering),微调(fine-tuning)等方法进一步提升模型表现的方法。 #### 发布与监控 最后,在确认一切正常后就可以正式对外提供这项基于DeepSeek的新功能了。与此同时建立一套完善的日志记录机制用于实时跟踪线上业务状态变化情况也必不可少;这对于及时发现潜在风险因素至关重要。 ```python # 假设代码片段展示了一个简单的Python脚本用来自动化部分部署过程中的任务 import requests def deploy_model(api_key, model_name="deepseek"): url = f"https://api.ollama.com/v1/models/{model_name}/deploy" headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(url, headers=headers) if response.status_code == 200: print("Model deployed successfully.") else: print("Failed to deploy model.") if __name__ == "__main__": api_key = input("Enter your Ollama API key:") deploy_model(api_key) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值