年初以来,“智能体”话题引起高度关注,热度迟迟不退。
什么是“智能体”?简单来说,相比AI大模型传统的“对话”能力,智能体借助“精细化的功能定位+智能工作流”,在突飞猛进的大模型能力基础之上,渐渐生长成为具有自主学习、感知、观测、决策和执行能力的“智能个体”。
在一些用“智能体”挑战复杂工作任务的测试中,它们的能力进步飞快、表现惊人。甚至有人这样感叹:2025年,也许是人类比AI聪明的最后一年。
而作为“智能体”的前沿产物之一,越来越多教育领域的“智能体”也正在逐步走进课堂,成为教师和学生的新伙伴。
多模态创作能力,个性化规划能力,空前的记忆能力,强大的执行能力……“教育智能体”如何真正帮助教师的教学更轻松、专业学习更有效、成长路径更清晰?如何推动学生走向自适应学习?
今天,我们准备了一份详尽指南,帮助你从0到1,打造出有效好用的专属智能体。
1、如何配置智能体?才能像你一样“懂教学”
怎么配置,才能让智能体让自己一样“懂教学”,真正发挥作用?我们从实操出发,一步一步尝试。
基础:一句话打造教育智能体
很多平台都推出了“一句话创建、描述智能体”“(AI辅助)生成角色设定”“自动优化(角色)提示词”等类似功能,降低了智能体的创建难度。
以下图为例,用“小学资深数学教师”描述对智能体的功能需求,点击“快速创建”,AI助手就自动生成了智能体名称、分类、简介、角色设定、目标任务及需求说明等。到这一步,一个教育智能体“小学数学导师”的基础版已经创建完成。
各平台功能布局或有不同,此处为星火大模型,仅作示例
大家可以参考下面的“一段话描述”,开启你的专属智能体打造:
语文:你是一位资深的语文老师,擅长帮助学生梳理语文知识点,提炼重点难点,构建清晰的知识框架。无论是文言文、现代文阅读还是作文技巧,你都能用简洁明了的语言帮助学生快速掌握核心内容。
数学:你是一位资深的数学老师,擅长于帮助学生总结知识,梳理高中数学某知识点下的相关内容,建构思维框架,要求语言简洁明了。
英语:你是一位资深的英语老师,擅长帮助学生总结语法规则、词汇用法及阅读写作技巧。你能用简洁的语言梳理英语知识点,帮助学生构建系统的学习框架,轻松应对考试和日常学习。
进阶:给智能体更多“教师个性”
要让智能体更好地发挥作用,配置过程中还需要赋予它充分的“教师个性”,帮助它准确理解你的需求。
角色名称: 智能体名称要简洁明了、一眼看出用途,例如“英语口语小助手”或“数学错题诊疗室”。
开场白: 一段亲切、有趣的开场白,可以快速拉近智能体与学生的距离。比如:“你好,我是你的数学小助手高小斯,有不会的题目随时问我,我会手把手教你给它拿下!” 这样学生马上就明白智能体的定位和使用方式。
提示词: 明确的提示词能让智能体更好地理解教师需求。要具体、清晰、按顺序列出你想让智能体执行的步骤和采取的策略,相当于制定“规则”。如此,才能确保智能体的回答过程符合教师预期(能真正有效地服务学生)。比如:
批改作业场景,可以设置:
-
先识别学生答案中的错误步骤或知识点;
-
再给出对应知识点的讲解和错误分析;
-
最后推荐类似题型供练习巩固。
课后答疑场景,可以设置:
-
收到学生问题后,先引导学生尝试回忆相关知识(提示一些解题思路);
-
如果学生仍无法解决,再给出分步骤的详细解答过程。
各平台都推出了可参考的提示词模板,或自动优化提示词功能。
比如,告诉AI——
帮我把这句话优化为具体、清晰的提示词:当学生提问数学问题时,为他分析题目类型,给出详细的解题步骤,分析为什么这样做,提供三道类似的练习题。
AI会返回更精准,运行更有效的提示词,供老师们进一步调整。
各平台大模型生成的提示词有所不同,此处为扣子平台,仅作示例
除了教师自身,“教师个性”的内涵还可以扩展得更远。比如,打造包含某个教育名家特点的智能体——借助平台生成并优化关于“苏格拉底式对话”的结构化提示词。然后,结合提示词用智能体平台打造“苏格拉底式智能体”,通过提问激发学生的好奇心与批判性思维,持续追踪学生反馈和思考。
类似这样的智能体,很可能会在与师生的交互中,碰撞出更多教育火花。
精进:让智能体为你的日常省心省力
掌握了基本技巧,接下来我们尝试打造一个功能更完善的智能体。
以“小学语文作文批改助手”这个智能体为例,它的用途是——通过上传学生作文的图片或者文本,让智能体自动识别内容,准确批改。帮语文老师减轻这项“力气活”。
批改作业/作文、错题解析这类智能体的逻辑类似,其他学科也可以借鉴。整体思路,大致分成两步:
1. 调用OCR插件识别上传图片中的文字;
2. 使用“大模型+提示词”判别内容,进行分析、点评,提出修改建议。
各平台的功能布局有所不同,此处为扣子平台,仅作示例
点开扣子平台“创建智能体”按钮,会来到上图中的页面。
第一步,确定智能体人设。点击“自动优化提示词”(图示①),输入对“小学语文作文批改助手”智能体的功能描述,系统能够自动生成“人设与回复逻辑”相关内容。(见上图左侧内容)
第二步,选取支持智能体运行的大模型。相当于赋予智能体底层能力。部分大模型尚不支持插件、工作流等功能,此处选择了能力强劲的DeepSeek-R1(图示②)。平台中提供了多款大模型,推理、文本解读创作、图像理解、图像生成、数据分析等能力各有侧重,可按需自由选择。
第三步,为智能体配置插件。相当于给智能体提供几个趁手的工具。此处选择“根据提示词自动添加工具”,由平台分析后推荐。(图示③)
第四步,工作流配置。这一步相当于为智能体梳理运行规范。同时,这也是比较重要,复杂程度较高的一环。(图示④)
“作文批改工作流”整体节点
以智能体中的“作文批改”工作流为例。这一工作流的作用是:输入处理好的文本内容,使用DeepSeek大模型进行批改,输出批改结果。
弄清作用,工作流搭建的重点也基本明确:保证学生在输入作文后,大模型能准确完成批改处理——这一小节,大模型的能力配置是重点。
工作流中关于“作文整理、分析、批改”的大模型相关配置
因此,关于作文整理批改这个节点,需要留意四个细节:“模型选择”(见上图①,大模型可按需选择,此处选了DeepSeek-R1 32B版本)、“输入”(上图②,开始节点输入的参数)、“系统提示词”(上图③,根据批改要求所写的提示词),以及输出配置(上图④,作文批改的五个角度“语句、用词、语法、逻辑、主题”)。
工作流中“结束”节点相关配置
最后一步,是在工作流的结束节点中,选择大模型节点输出的参数——作文批改的五个角度。至此,“作文批改工作流”搭建完成。
作文分析点评示例
我们用一篇五年级小朋友的作文进行测试,发现智能体的确具备了符合需求的,更精准、全面的批改能力。
到这一步,打造专属智能体的工作已经收尾。如果在测试中没什么问题,就可以正式发布,开放使用了。
当然,一款好用的教育智能体离不开合适的平台,特别是非技术背景的教师,怎么便捷、轻松完成开发同样重要。我们简单对比了目前国内几款主流平台的特点,供老师们参考、选择。
扣子(网页端)
无需编程即可创建智能体、智能应用。平台支持多家大模型,适合教学工具开发、作业批改等多个场景,教师可以根据需求定制。界面友好,操作简便,初学者、进阶者都适合。
文心智能体平台(网页端、手机端)
适合学习规划、心理咨询,基础教学辅助等场景,无需编程即可创建智能体。手机端不支持太复杂的功能。
豆包(网页端、PC端、手机端)
豆包是目前创建智能体最简便的应用之一,适合想体验智能体的初学者。对话功能强大,手机端非常适合学生自助答疑场景。
其他
通义的数据分析能力较强;腾讯元器融合了微信生态;智谱清言适合基础的辅助教学。
2、打造实用高效的智能体,要避开四个“坑”
目标不清,定位模糊
目前,教育智能体擅长执行教学中更具体、定向的任务。换句话说,教师打造教育智能体,就像将某一项日常工作“外包”给智能体,让它更好地辅助自己教育教学。因此,弄清自己的需求是第一步。
如果老师没有想清楚自己要解决什么问题,想让智能体发挥什么作用,后续各项操作很可能会偏离轨道,导致智能体不“智能”,无法满足实际需求。
建议:聚焦小场景、小问题
因此,创建时可遵循**“微场景、深耦合”原则**。“微场景”即聚焦细微问题,从具体的、小的任务或项目展开,而不是一步到位解决所有问题。“深耦合”,指向智能体角色和功能的一致,要跟师生需求紧密结合。
波士顿学院和悉尼大学的教师广泛探索了智能体应用场景,梳理出一线教师的常见角色需求:
课程与教学助理:快速生成创意课程方案、教学方案等,帮助学生了解课程运作方式
作业导师:为学生学习搭建脚手架,促进学生更好地独立学习
流程指导:引导学生完成某项复杂任务,适时减轻学生认知负荷,鼓励学生
学习伙伴:学生随时提交问题,智能体及时给予解答,与学生展开交流
流程指导:引导学生完成某项复杂任务,适时减轻学生认知负荷,鼓励学生
评价助手:辅助教师全面评估学生的学习成长状况
找准需求,才能创建出一系列功能聚焦、轻量化、可行性高的智能体。
资料数据随意,质量堪忧
不少平台为创建智能体提供了“知识库”配置功能,支持上传文本、表格、图片等多种形式内容。
使用“知识库”,相当于为大模型提供了它自身本不具备的垂直领域数据。这样智能体运行的时候可以有效降低AI幻觉,提高输出准确性。
但支持自行上传,也就存在一个隐患——“垃圾进,垃圾出”。
**如果提供的内容质量差,智能体的回答很可能也不靠谱。**一些错误的、过时的、不适用的教育教学内容,会直接影响学生的学习效果,甚至可能让他们形成错误的认知。
建议:精选内容、加强审核
首先要确保资料的可靠性。学科知识方面,优先使用各学科的官方教材、配套教辅、课程标准等权威机构发布的资料。
教学案例方面,教师可将自己或他人遇到的问题及解答过程作为资料上传。但要注意,谨慎使用网络中未经证实、来源不明的信息。
如果教师想自建数据(比如“学生常见问题集”),建议组织多位教师进行校准、审核。
其次要整理、清洗数据,提升质量。比如,删除资料中与教学目标无关的内容;纠正资料中的错漏;统一格式(如将所有公式转换成LaTex格式),方便智能体处理;为数据打标签(如知识点、难度、题型等),作分类(如学科、年级等)。方便智能体理解、检索,按需调用。
如此,才能保证智能体的输出是正确的、可靠的,没有偏离教育教学目标。
指令模糊、表达不清
智能体能否正确理解教师意图、理解学生意图,这一点至关重要。
如果存在和智能体的沟通障碍,不仅使用时得不到正确回答、无法执行相应操作,也会让创建者找不准问题所在,增加后期调试难度。
建议:逻辑清晰、精准表达、反复调试
提示词逻辑清晰。建议使用清晰的逻辑结构来组织提示词;学习借鉴其他教师的智能体提示词。有不少智能体平台提供了“自动优化提示词”功能,教师可以在系统优化的基础上继续微调。
精准表达、避免歧义。教师在描述学科知识时,使用准确、规范的专业术语,避免使用口语化或模糊的表达。比如,“当学生提问关于‘现在完成时’的用法……”“如果学生输入的答案包含……,则判定为正确”。
给学生使用的智能体,发布前尤其要反复测试,调整指令、优化回答。教师要尽可能站在学生的角度,模拟他们会提出的各种问题,检验智能体回答的准确性、合理性、完整性。比如,解答数学题出现步骤错误,那是提供的数据本身有误?还是提示词不够清楚导致理解错误?经过多番测试、调试,才能保证智能体能切实输出更高质量的内容。
缺乏迭代,止步不前
跟大多数“产品”一样,智能体发布后无法“一劳永逸”,需要根据师生的使用反馈不断改进,更好地满足更多人的需求。
建议:定期评估、持续优化
主动收集、定期评估。定期向学生、同事或者专业人士等征求对智能体的意见和建议。也可以在智能体中设置反馈链接,收集相关信息,分析问题,发现改进点。
持续优化,迭代更新。包括,结合反馈建议后的智能体提示词优化;知识库内容的及时更新、修正;基于大模型基座能力发展,适时增加新功能,提升智能体能力。
“AI+教育”的融合创新,将塑造新的教育生态:深度个性化学习、全场景融合、人机协同教学、多模态交互、沉浸式学习……
教育智能体的兴起,不仅代表教育技术的进化,更预示了“以学习者为中心”的教育生态正在加速到来。教师,也将从“知识传授者”真正转变为“学习引导师”和“教学设计者”。而智能体,会成为教师提升课堂、革新教育的全新工具。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。