利用matlab求解线性优化问题【基于matlab的动力学模型学习笔记_11】

本文介绍了如何使用matlab的fmincon函数解决线性优化问题,包括无约束、非线性约束和线性约束的最优解。详细探讨了fmincon函数的用法,并提供了不同情况下的示例代码。
摘要由CSDN通过智能技术生成

题目:

 (1)画出可行域范围

question1.m

%% 标出函数
r=4;
a1=0;
a2=0;
theta=0:pi/20:2*pi;
x_1=a1+r*cos(theta);
x_2=a2+r*sin(theta);
plot(x_1,x_2);
hold on
text(2,4,'16-(x_1)^2-(x_2)^2=0','color','b'); %在坐标点(6.8,4)显示x1=7这个函数线

L2=[-2,-4;5,3]; 
plot(L2(:,1),L2(:,2));hold on    %x2最大值为3
text(3,1,'2-x_1-x_2=0','color','b'); %从点L2(:,1)到点L2(:,2)

L3=[-5,0;5 0]; 
plot(L3(:,1),L3(:,2));hold on 
text(3,0,'x_1=0','color','b') 

L4=[0,-5;0,5]; 
plot(L4(:,1),L4(:,2)); 
text(0,3,'x_2=0','color','b') 

grid on

%% 填充
[X1,X2]=meshgrid(0:0.01:5,0:0.01:5);%画出区域
idX1=(X1.*X1+X2.*X2<=16)&(-X2+X1<=2)&(X1>=0)&(X2>=0);
X1=X1(idX1);
X2=X2(idX1);
k=convhull(X1,X2); %计算面积
h=fill(X1(k),X2(k),'g');  %绿色填充        
set(h,'edgealpha',0,'facealpha',0.3)  %边界,透明度

 (2)利用fmincon分别求解无约束、约束最优解

Matlab中的fmincon函数可以用于求解带约束的非线性多变量函数的最小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值