线性回归——最小二乘求解

线性回归
线性回归用于数值预测,它的主要思想是利用预定的权值将属性进行线性组合来表示类别:
y=w0+w1x1+w2x2+...+wnxn
其中,y是类别属性值, x1,x2,...,xn 是一般属性值, w1,w2,...,xn 是权值, w0 称为偏置,类似于一元线性回归 y=ax+b 中b。
求解线性回归就是通过已知的一些数据点
(1,xi1,xi2,...,xin,yi)
算出权重 (w0,w1,...,wn) 。在属性集合中加了一个1,是为了与权重 w0 对应,属性值的上标i,是指这个属性值属于第i个数据点。

最小二乘求解线性回归
假设我们已知m个数据点的属性值,我们便有了包含m个方程的方程组:
y1=w0+w1x11+w2x12+...+wnx1n
y2=w0+w1x21+w2x22+...+wnx2n

ym=w0+w1xm1+w2xm2+...+wnxmn
方程组可以表示为矩阵形式:

y1y2ym=111x11x21xm1x1nx2nxmnw0w1wn

其中,
y1y2ym

称为观测向量,
111x11x21xm1x1nx2nxmn

称为设计矩阵,
w0w1wn

称为参数向量。
这里假设设计矩阵的各列线性无关,也就是说,用于表示 y 的其它属性各贡献了不同方向的力量。
我们知道,当mn+1时,通过消元法,就能求出 (w0,w1,...,wn) ,有一个解,或者多个解;但是当 m>n+1 时, 方程可能无解,这时设计矩阵的列向量生成了 R(n+1) 的一个子空间,也就是设计矩阵的列空间,当观察向量属于列空间时,方程组有解,但是当观测向量不属于列空间时,方程组就没有解了。当方程组没解时,我们该怎么办呢?算近似解。这儿,我们用列空间中离观测向量最近的向量代替观测向量求解方程组。列空间中离观测向量最近的向量就是观测向量列空的正交投影。关于这个结论有一个定理:
假设W是 Rn 空间中的一个字空间, y Rn中的任意向量, y 是y在W上的正交投影,那么 y 是W中最接近 y 的向量,也就是说,
|yy||yv|
对所有属于W又异于 y 的v都成立。其中|y-y’|是指向量 yy 的模,它的计算公式是:
nk=1(y1y1)2
使得这个公式的值最小便是“最小二乘”这个名字的由来。
在我们这里, y 是观测向量,y就是列空间中用来代替 y 的向量,叫做预测向量。
接下来的重点就是算观测向量在设计矩阵列空间的正交投影了。我这里简要地给出求一个向量在一个空间中正交投影的计算方法。
如果{u1,u2,...,up} Rn 中子空间W的单位正交基,那么
projwy=(yu1)u1+(yu2)u2+...+(yup)up
其中, ui 都是向量。
要得到设计向量列空间的单位正交基,可以通过把设计矩阵进行QR分解得到。关于QR分解的定理如下:
如果 m x n矩阵A的列向量线性无关,那么A可以分解为 A=QR , 其中Q是一个 m x n矩阵,其列形成A矩阵列空间的一个单位正交基,R是一个 mn x n <script id="MathJax-Element-295" type="math/tex">n</script>可逆矩阵且在对角线上的元素为正数。

参考资料:
1.《概率导论》第2版,(美)伯特瑟卡斯,(美)齐齐克利斯 著,郑忠国,童行伟 译
2.《数据挖掘 实用机器学习工具与技术》第3版,
(新西兰)威滕(Witten,I.H.),(新西兰)弗兰克(Frank,E.) 著,董琳 译
3.《线性代数及其应用》第3版,(美)莱(Lay,D.C.) 著,刘深泉 等译

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值