向量的点乘:(1)等于各分量相乘再相加,
(2)两个向量的模相乘再乘以两个向量的夹角的余弦值
两个向量点乘:
三角形的边长公式:
1.在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a²=b²+c²-2bc×cosA 此定理可以变形为:cosA=(b²+c²-a²)÷2bc
转移到两个向量可知:两个向量相减 等于
向量点乘的几何意义:在二维空间中两个向量相乘等于把其中一个向量在另一个向量上的投影大小乘以另一个向量的模。
如下图所示:
如上图向量点乘两种表示,一种是数值表示一种是集合表示,第一种是将两个向量映射到坐标轴上,由于坐标轴上的Y方向 和X方向之间互不影响(两者之间不做贡献)并分别将两个轴上的数值进行相乘在相加 。第二种是将两个向量在方向上 进行统一,在将两者的模相乘。