Ubuntu 安装NVIDIA显卡驱动、安装对应的CUDA

一、Ubuntu 如何根据NVIDIA显卡型号确定对应的显卡驱动版本并安装

Ubuntu 如何根据NVIDIA显卡型号确定对应的显卡驱动版本并安装

二、根据安装的显卡驱动,安装对应的 CUDA 版本

1. 查看显卡驱动版本

通过终端 nvidia-smi查看

nvidia-smi  #查看GPU信息, 安装完显卡驱动后需要先重启一次电脑

在这里插入图片描述

可以发现,我这里的NVIDIA显卡驱动版本是 470.141.03,这里可以看到本机最高支持 cuda 11.4 。.

2. 根据显卡驱动版本,安装对应的CUDA版本

(1) 确定 CUDA 版本

所以需要根据已有的显卡驱动版本,去NVIDIA官网查看该驱动版本所能支持的CUDA版本
如下表:
在这里插入图片描述

通过上表可以发现,由于自己 Ubuntu 下的NVIDIA显卡驱动版本是 470.141.03,所以自己电脑显卡最高支持的是 CUDA 11.4 Update 4 .

(2) 安装 CUDA

1) 官网下载并安装 CUDA

从官网下载CUDA:
下载最新版 CUDA
在这里插入图片描述

下载 历史版本的CUDA
在这里插入图片描述
然后选择自己对应的系统版本的CUDA,并下载:
在这里插入图片描述

按照指令一个一个执行:

wget https://developer.download.nvidia.com/compute/cuda/11.4.0/local_installers/cuda_11.4.0_470.42.01_linux.run
sudo sh cuda_11.4.0_470.42.01_linux.run

选择 Continue ,然后输入 accept:

在这里插入图片描述

在这里插入图片描述
按回车取消 Driver 的安装(因为一般已经装好驱动了),然后回车选择 Install:
在这里插入图片描述
在这里插入图片描述

上面一步,选择 Install 后,终端就会跳出选择界面,回到正常终端模式,并且没有用任何提示。这是正常现象,等待安装完成即可。安装完成后,会出现如下类似界面:
在这里插入图片描述

添加环境变量,sudo gedit ~/.bashrc ,在末尾添加:

export PATH=$PATH:/usr/local/cuda-11.4/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.4/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.4/lib64
2) 直接二进制安装 CUDA

直接二进制安装的版本版本号会比较低。

sudo apt-get install nvidia-cuda-toolkit

安装包比较大,等待安装完成。

3. 验证CUDA是否安装成功

nvcc -V   # 或者 nvcc --version

如果输出以下内容,说明 CUDA 安装成功。
在这里插入图片描述

参考链接

[1] FAST-ROBOT. ubuntu18.04安装cuda和cudnn [EB/OL]. https://blog.csdn.net/qq_43644413/article/details/124899366, 2022-05-24/2022-10-17.

### NVIDIA CUDA 安装指南 对于希望在系统上部署和支持CUDA技术的开发者而言,安装过程涉及几个必要的组件。为了使CUDA正常工作,需要确保计算机配备有支持CUDA的GPU,并运行带有`gcc`编译器及相关工具链的支持版本Linux操作系统[^2]。 #### 准备环境 - **硬件需求**: 配备支持CUDA架构的NVIDIA显卡。 - **软件需求**: - Linux发行版(例如Ubuntu) - GCC 编译器及其关联的构建工具集 - 已更新至最新状态的操作系统内核 #### 下载CUDA Toolkit 访问[NVIDIA官方网站](http://developer.nvidia.com/cuda-downloads),依据所使用的平台选择合适的CUDA版本进行下载。此网站提供了针对不同操作系统的具体安装指导说明文档。 #### 执行安装流程 一旦完成了上述准备工作,则可以按照官方提供的步骤来完成CUDA toolkit的实际安装: 1. 接受许可协议条款; 2. 选择自定义或典型安装路径; 3. 完成驱动程序以及库文件的设置; 需要注意的是,在某些情况下可能还需要额外配置环境变量以便于后续开发工作的顺利开展。这通常涉及到编辑用户的shell profile文件(如`.bashrc`),添加如下所示的内容以指向新安装好的CUDA目录下的bin和lib文件夹位置: ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` 最后重启终端或者执行 `source ~/.bashrc` 命令让更改生效。 #### 测试安装成果 可以通过编写简单的测试代码验证CUDA是否成功安装并能正常使用。下面给出一段用于检验设备能否被正确识别的小例子: ```cpp #include <stdio.h> #include <cuda_runtime.h> int main() { int deviceCount; cudaGetDeviceCount(&deviceCount); printf("CUDA Device Count: %d\n", deviceCount); for (int i = 0; i < deviceCount; ++i) { cudaDeviceProp prop; cudaGetDeviceProperties(&prop, i); printf("Device Number: %d\n", i); printf(" Device name: %s\n", prop.name); printf(" Memory Clock Rate (KHz): %d\n", prop.memoryClockRate); printf(" Memory Bus Width (bits): %d\n", prop.memoryBusWidth); printf(" Peak Memory Bandwidth (GB/s): %.1f\n\n", 2.0*prop.memoryClockRate*(prop.memoryBusWidth/8)/1.0e6); } return 0; } ``` 编译这段C++源码之前记得先保存为 `.cu` 文件扩展名形式,之后利用nvcc命令来进行编译链接操作: ```bash nvcc -o test_cuda test_cuda.cu ./test_cuda ``` 如果一切无误的话,应该可以看到有关已连接到主机上的所有兼容CUDA GPU的信息输出。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值