前言:
个人感觉,后面几个章节相对知识性内容不是那么明显,更多像一种前沿领域的讲座lecture。并且没有lecture notes。所以有必要做一些笔记,用自己的语言记录,知识重组一下。
summary:
RNN是用来解决序列数据的神经网络,具有下面的几种类型。其中不同的类型有不同的实际应用。One to one 可以用于 image captioning 通过图片生成序列化的描述。Many to one 可以用于文本情感分析。Many to many 可以用于机器翻译。

基础的vanilla RNN模型:
这几种RNN结构的本质都是One to one 结构的堆叠。单个RNN结构具有一个hidden state结构h。h储存了之前所有结构的信息。对于一个input x 通过一个关于x,h的函数生成下一个hidden state。(这个函数通常是和矩阵W做乘法,之后用tanh激活函数)

以下面这个many to many的结构为例子。正向传播的时候通过上面的方式算出每一个隐藏层,然后用一个新的神经网络(什么cnn都行)算出y,通过和标签比对,损失函数(SVM Softmax啥的)算出单个y的损失,直接加和算出系统的损失