FPN论文笔记

  1. 论文背景及大致思路
    a. FAIR,康奈尔大学出品,将传统图像领域常用的金字塔结构引入网络结构,加入横向连接,并根据预测目标大小,在不同的特征层进行预测。充分利用浅层的位置信息和高层的语义信息,将FPN和Faster R-CNN结合后,在COCO数据集上得到了很好的效果。

  2. 和其他的结构的异同
    在这里插入图片描述
    a. 可以看到CNN的过程就是一个天然的金字塔结构了。由于池化等操作,随着层数的加深,感受野的增大,虽然语义信息得到了加强,但是位置信息逐渐地丢失,这就影响了物体检测时的定位准确度。而且会造成小物体无法检测到。
    b. SSD首先想到了在多个尺度上分别检测,但是SSD没有上采样的过程,就无法将底层的语义信息应用到高分辨率层,所以对小物体的检测虽有提升,但仍然不是那么的优秀。
    c. U-Net等结构则也采用了双向结构,横连的结构,但是没有在各个特征层独立的做检测。

  3. FPN
    a. 整体结构分为了三个部分:bottom-up,top-down,lateral connection。
    b. Bottom-up:这里就是一个普通的前向传播网络,选择每一阶段最后一层作为保留层,主干网络选择ResNet,将2,3,4,5阶段的结果记作{C2,C3,C4,C5},考虑到大小,第一层卷积结果不用。
    c. Top-down && lateral connection:这两个部分一起介绍。前者就是不断地上采样,得到和前面保留的若干曾相同分辨率的特征层,后者就是将对应的部分进行特征融合。我们对C5进行一次1 * 1的卷积,调整其通道数,得到了P5。然后上采样,并和对应的层进行融合。这里存在横向连接时都会用1 * 1的卷积调整通道数,减少参数。融合后进行一次3 * 3的卷积,减少上采样的混叠效应。得到了对应的{P2,P3,P4,P5}。输出的这些层通道数都为256。

  4. FPN for RPN and Faster R-CNN
    a. 前面提到了将FPN应用于Faster R-CNN。主要就是在于RPN后不再只是在最后一层提取ROI了,而是根据W,H,选择合适的特征层,公式如下:
    在这里插入图片描述
    其中,k0 = 4,这样就能使得越大的物体在越深的层提取,越小的物体,在越浅的层提取。锚框在各个层都是固定的,{32,64,128,256,512},比例分别为{1:2,1:1,2:1},也就是每层三种,一共15种。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值