&Title
Feature Pyramid Networks for Object Detection
&Summary
文章的思想比较简单,主要是利用特征金字塔对不同层次的特征进行尺度变化后,再进行信息融合,从而可以提取到比较低层的信息,也就是相对顶层特征来说更加详细的信息。顶层特征在不断地卷积池化过程中可能忽略了小物体的一些信息,特征金字塔通过不同层次的特征融合,使得小物体的信息也能够比较完整地反映出来。这个方法可以广泛地应用在针对小目标物体的检测上。
我的理解:本来图片通过卷积池化操作,只能保留住大物体的特征,换句话说,小物体的特征基本上就会被过滤掉。现在通过top-down的操作,对特征图片进行上采样(放大图片(小物体就跟着放大了,也就比较容易检测到),与对应的卷积层的下一层的尺寸相同),然后融合他们的特征,高层特征得到了增强,每一层预测所用的feature map都融合了不同分辨率、不同语义强度的特征,可以完成对应分辨率大小的物体进行检测,保证每一层都有合适的分辨率以及强语义特征。
即:少位置信息而多语义信息的top层feature map + 多位置信息而少语义信息的down层feature map
&Research Objective
特征金字塔是检测不同尺度上目标的识别系统中的基本组件。但最近的深度学习目标检测器避免使用金字塔表示,部分是因为计算量和存储都很大。
作者的目标:目标是很自然的利用ConvNet的特征层次的金字塔形状,同时生成一个在所有层次上都有很强语义的特征金字塔。(就是设计一个算法,使得(计算/存储) 开销合理,而却有效检出小物体。)
&Problem Statement
特征金字塔是检测不同尺度上目标的识别系统中的基本组件。但最近的