【论文笔记】:NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

NAS-FPN是通过神经网络结构搜索发现的一种用于目标检测的可扩展特征金字塔结构。该方法针对现有手工设计的FPN进行优化,通过强化学习训练控制器在覆盖所有交叉尺度连接的搜索空间中选择最佳模型。NAS-FPN在保持高效的同时,提升了检测性能,特别是在与RetinaNet框架结合时,相比于传统方法显示出更好的准确性和延迟权衡。
摘要由CSDN通过智能技术生成

&Title:

&Summary

目前最先进的卷积结构用于物体检测手工设计的。
在这里,我们的目标是一个更好的学习可扩展特征金字塔结构,用于目标检测。在一个覆盖所有交叉尺度连接的可扩展搜索空间中采用神经网络结构搜索,发现了一种新的特征金字塔结构。架构名为NAS-FPN,由自顶向下和自下而上的连接组合而成,可以跨范围地融合特性

为了发现一个更好的FPN架构,作者充分利用了神经网络搜索技术[Neural architecture search with rein- forcement learning.],使用强化学习训练了一个控制器来在给定的搜索空间中选择最好的模型结构。控制器使用在搜索空间内子模型的准确率来作为更新参数的反馈信号(reward signal)。因此,通过这样的试错,控制器会学到越来越好的结构,搜索空间在架构成功搜索的过程中起到了很重要的作用。对于FPN的可拓展性,在搜索的过程中,作者强制让FPN重复N次然后concatenation到一起形成一个大的架构。

一句话解释:FPN就是用来特征融合的层,之前都是手工设计,现在尝试神经网络搜索设计!其实就是优化FPN。

结果:与最先进的目标检测模型相比,NAS-FPN与retinanet框架中的各种主干模型相结合,实现了更好的准确性和延迟权衡。与mobilenetv2模型的最先进的ssdlite相比,nas-fpn提高了2 ap的移动检测精度,达到48.3 ap,以更少的计算时间超越了mask r-cnn的检测精度。

&Research Objective

目标是一个更好的学习可扩展特征金字塔结构,用于目标检测。在一个覆盖所有交叉尺度连接的可扩展搜索空间中,采用神经网络结构搜索发现了一种新的特征金字塔结构。架构名为NAS-FPN,由自顶向下和自下而上的连接组合而成,可以跨范围地融合特性。

注:神经网络搜索(理论上可以对任何东西进行搜索,就像是强化学习和进化算法
遗传算法等等,这些都是寻优算法,只不过现在把这些算法应用到了神经网络的领域)

&Problem Statement

当前目标检测网络中采用特征金字塔网络(FPN)结构解决多尺度的问题,但是这些 FPN 都是人工事先设计,并不一定是最优的结构。为了更灵活地获得更优的 FPN 结构,该文章首创性地提出了采用神经架构搜索(NAS)的方式定制化地构建 FPN,该结构又称 NAS-FPN。

特征金字塔网络(FPN)是一种典型的模型体系结构,用于生成目标检测的金字塔特征表示。它采用了一个主干模型,通常是为图像分类而设计的,通过将主干模型中的特征层次中的两个相邻层按顺序组合,通过自顶向下和横向连接来构建特征金字塔。高级特征在语义上很强,但分辨率较低,它们被放大并与高分辨率特征相结合,以生成高分辨率和语义强的特征表示。虽然fpn简单有效,但它可能不是最佳的体系结构设计。最近,panet[25]显示在fpn特性上添加额外的自下而上路径可以改进低分辨率特性的特性表示。许多最近的论文[7、16、17、34、38、39、40、43、41]提出了各种交叉尺度连接或操作,以组合特征以生成金字塔特征表示。

&Method(s)

我们的方法基于RetinaNet框架,因为它简单而有效。 RetinaNet框架有两个主要组件:骨干网络<

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值