数据分析方法论(二)漏斗分析

零、闲话

数据分析师到底是干啥的?

无论是刚入行的新人还是工作个几年的‘老油条’或多或少都有些不清楚,数据分析师是每天取数的工具人?还是可视化报表的maker?还是好不容易做出来一个专题分析,却被业务说纸上谈兵,不说“人话”。这谁心中不是委屈气愤,想搂掉业务两根头发。

但是数据分析师都是要经历这些狗血的经历,终有一天能明白自己的使命:熟悉业务,在此基础上基于对业务的理解发现业务上的问题,然后提出分析的方案,然后再是用工具提数分析,最后给出结论和建议,并推动相关方实施落地,进而解决问题,完成从业务中发现问题,再回到业务中解决问题的完整闭环。这才是数据分析的真正意义。

数据分析是以业务、思维为主,工具为辅的岗位,最最重要的就是如何发现问题,如何针对问题形成分析思路、选择分析方法。

前面的文章也有数据分析思维、方法论,包括:

数据分析方法论(一)留存分析

一、什么是漏斗分析?

业务流程从起点到终点每经历一个环节都会有用户流失,于此,我么想了解分析每一步业务流程的转化效率和用户流失情况,所以漏斗模型应运而生,就是解决这个问题的经典方法。

这玩意最早由St. Elmo Lewis (美国知名广告人)在1898年提出的,叫做消费者购买漏斗(the purchase funnel),也叫消费者漏斗customer funnel、营销漏斗sales/marketing funnel等,是一种品牌广告的营销策略,准确的概括出了顾客关于产品或者服务的流程。

Lewis提出的这个策略,后来被称为AIDA模型,即意识-兴趣-欲望-行动。在接下来的100年里,随着漏斗模型的推广,为了适应新的媒体平台,以及用户行为路径的改变,它经过多次的修改和扩展,产生了各种衍生版本,比如AIDMA、AISDALSLove、AISAS、AARRR等。

漏斗分析最常用的是转化率和流失率两个互补型指标,流失率=1-转化率。用一个简单的例子来说明,假如有16899人访问某APP,有3362人点击注册,有575人注册成功。这个过程共有三步,第一步到第二步的转化率为19.89%,流失率为80.11%,第二步到第三步转化率为17.1%࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值