数据分析方法(1)之漏斗分析

本文介绍了漏斗分析的定义、使用场景、作用,并通过购物APP的例子阐述其在用户行为监测和转化率优化中的应用。在实战部分,分析了数据集,发现用户流失主要存在于点击-收藏环节,提出了针对性的优化建议。
摘要由CSDN通过智能技术生成

1、理论

1.1、 定义

  • 漏斗模型是一套流程式数据分析,它能够反映用户行为从起点到终点各阶段用户转化率情况,是一种重要的分析模型。

1.2、 使用场景

  • 网站和APP用户行为分析的流量监控、电商行业、零售的购买转化率、产品营销和销售等日常数据运营与数据分析。

1.3、例子

  • 在购物app中,用户从首页进入产品页面到最终完成支付的行为,需要的环节包含:点击——收藏——加入购物车——支付。这其中的每个环节都有一定的转化率,我们需要做的是监控用户在各环节的行为情况,寻找每个转化环节的优化点,提高用户在环节之间的转化率,最终来提高GMV(商品交易总额)。

1.4、作用

  • 1、监控用户在各个环节间的转化情况。降低流失是运营人群的重要目标,通过转化率可以迅速定位用户流失环节,针对改环节找到优化点,以此提升用户留存率。
  • 2、多维度切分与呈现用户转化情况科学的漏斗分析能够展现转化率趋势的曲线,能帮助企业精细地捕捉用户行为变化,提升了转化分析的精度和效率,对选购流程的异常定位和策略调整效果验证很有意义。
  • 3、不同属性的用户群体漏斗比较。运营或数据分析人员可通过不同属性的用户群体(如新注册用户与老客户)各环节转化率的差异对比,了解转化率最高的用户群体,给予福利等,并针对转化率异常环节进行调整。

2、实战

2.1、数据集说明

数据来自天池
- 本数据集共有大约1200万条数据,数据为淘宝APP2014年1118日至20141218日的用户行为数据,共6列字段,列字段分别是:
    - user_id:用户身份,脱敏
    - item_id:商品ID,脱敏
    - behavior_type:用户行为类型(包含点击、收藏、加购物车、支付四种行为,分别用数字1234表示)
    - user_geohash:地理位置
    - item_category:品类ID(商品所属的品类)
    - time:用户行为发生的时间

2.2、数据预处理

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号
warnings.filterwarnings('ignore')  # 忽略警告

data = pd.read_csv('E:/a学习材料/excel +sql++/双十二/tianchi_mobile_recommend_train_user.csv')
# 查看重复值数量
data.duplicated().sum()
# 删除重复值并替换原数据
data.drop_duplicates(inplace=True)
#查看缺失值
data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值