基于深度学习与图神经网络的智能交通系统出行需求时空预测【附代码】

  📊 数据科学与大数据专业 | 数据分析与模型构建 | 数据驱动决策

✨ 专业领域:

  • 数据挖掘与清洗

  • 大数据处理与存储技术

  • 机器学习与深度学习模型

  • 数据可视化与报告生成

  • 分布式计算与云计算

  • 数据安全与隐私保护


💡 擅长工具:

  • Python/R/Matlab 数据分析与建模

  • Hadoop/Spark 大数据处理平台

  • SQL数据库管理与优化

  • Tableau/Power BI 数据可视化工具

  • TensorFlow/PyTorch 深度学习框架

✅ 具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 基于深度学习的网约车出行需求预测方法

随着网约车出行服务的广泛普及,预测短时内网约车的出行需求成为提升服务效率和优化交通资源分配的重要课题。本文围绕时空数据中蕴含的动态相关性和局部特性,提出了针对区域级需求预测和起讫点需求预测的两种深度学习方法,分别是局部连接的时空全卷积神经网络 (LST-FCN)动态节点边注意力网络 (DNEAT)

区域级需求预测:局部连接的时空全卷积神经网络

区域级需求预测聚焦于城市不同区域在短时内出行需求的动态变化。传统方法往往依赖统计模型或规则卷积神经网络 (CNN),仅关注整体的时空相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值