最近的vision transformer阅读
- All Tokens Matter: Token Labeling for Training Better Vision Transformers(NIPS2021)
- DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification(NIPS2021)
- Not All Tokens Are Equal: Human-centric Visual Analysis via Token Clustering Transformer(CVPR2022)
- NAT: Neighborhood Attention Transformer
- Multimodal Token Fusion for Vision Transformers(CVPR 2022)
All Tokens Matter: Token Labeling for Training Better Vision Transformers(NIPS2021)

paper: http://proceedings.neurips.cc/paper/2021/file/9a49a25d845a483fae4be7e341368e36-Paper.pdf
github: https://github.com/zihangJiang/TokenLabeling
这里All Tokens Matter是针对之前vanilla ViT只用class token用来最后的预测而言的,这里要用上所有token的信息。具体做法就是给多层的token输出都增加与位置相关(其实就是能和patch对应上)的监督,从而辅助整体网络学习定位更精准。

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification(NIPS2021)

paper:http://proceedings.neurips.cc/paper/2021/file/747d3443e319a22747fbb873e8b2f9f2-Paper.pdf
github:
本文探讨了Vision Transformer的最新进展,包括Token Labeling、DynamicViT、Token Clustering Transformer (TCFormer) 和 Neighborhood Attention Transformer (NAT)。文章分析了这些方法如何改进效率和性能,例如通过动态令牌稀疏化、特征聚类和局部注意力机制。同时,提到了多模态令牌融合在Vision Transformers中的应用。
最低0.47元/天 解锁文章
2491

被折叠的 条评论
为什么被折叠?



