一种变进制数及其应用(全排列之Hash实现)

我们经常使用的数的进制为“常数进制”,即始终逢p进1。例如,p进制数K可表示为
    K = a0*p^0 + a1*p^1 + a2*p^2 + ... + an*p^n (其中0 <= ai <= p-1),
它可以表示任何一个自然数。

对于这种常数进制表示法,以及各种进制之间的转换大家应该是很熟悉的了,但大家可能很少听说变进制数。这里我要介绍一种特殊的变进制数,它能够被用来实现全排列的Hash函数,并且该Hash函数能够实现完美的防碰撞和空间利用(不会发生碰撞,且所有空间被完全使用,不多不少)。这种全排列Hash函数也被称为全排列数化技术。下面,我们就来看看这种变进制数。

我们考查这样一种变进制数:第1位逢2进1,第2位逢3进1,……,第n位逢n+1进1。它的表示形式为
    K = a1*1! + a2*2! + a3*3! + ... + an*n! (其中0 <= ai <= i),
也可以扩展为如下形式(因为按定义a0始终为0),以与p进制表示相对应:
    K = a0*0! + a1*1! + a2*2! + a3*3! + ... + an*n! (其中0 <= ai <= i)。
(后面的变进制数均指这种变进制数,且采用前一种表示法)

先让我们来考查一下该变进制数的进位是否正确。假设变进制数K的第i位ai为i+1,需要进位,而ai*i!=(i+1)*i!=1*(i+1)!,即正确的向高位进1。这说明该变进制数能够正确进位,从而是一种合法的计数方式。

接下来我们考查n位变进制数K的性质:
(1)当所有位ai均为i时,此时K有最大值
    MAX[K] = 1*1! + 2*2! + 3*3! + ... + n*n!
           = 1! + 1*1! + 2*2! + 3*3! + ... + n*n! - 1
           = (1+1)*1! + 2*2! + 3*3! + ... + n*n! - 1
           = 2! + 2*2! + 3*3! + ... + n*n! - 1
           = ...
           = (n+1)!-1
    因此,n位K进制数的最大值为(n+1)!-1。
(2)当所有位ai均为0时,此时K有最小值0。
因此,n位变进制数能够表示0到(n+1)!-1的范围内的所有自然数,共(n+1)!个。

在一些状态空间搜索算法中,我们需要快速判断某个状态是否已经出现,此时常常使用Hash函数来实现。其中,有一类特殊的状态空间,它们是由全排列产生的,比如N数码问题。对于n个元素的全排列,共产生n!个不同的排列或状态。下面将讨论如何使用这里的变进制数来实现一个针对全排列的Hash函数。

从数的角度来看,全排列和变进制数都用到了阶乘。如果我们能够用0到n!-1这n!个连续的变进制数来表示n个元素的所有排列,那么就能够把全排列完全地数化,建立起全排列和自然数之间一一对应的关系,也就实现了一个完美的Hash函数。那么,我们的想法能否实现呢?答案是肯定的,下面将进行讨论。

假设我们有b0,b1,b2,b3,...,bn共n+1个不同的元素,并假设各元素之间有一种次序关系 b0<b1<b2<...<bn。对它们进行全排列,共产生(n+1)!种不同的排列。对于产生的任一排列 c0,c1,c2,..,cn,其中第i个元素ci(1 <= i <= n)与它前面的i个元素构成的逆序对的个数为di(0 <= di <= i),那么我们得到一个逆序数序列d1,d2,...,dn(0 <= di <= i)。这不就是前面的n位变进制数的各个位么?于是,我们用n位变进制数M来表示该排列:
   M = d1*1! + d2*2! + ... + dn*n!
因此,每个排列都可以按这种方式表示成一个n位变进制数。下面,我们来考查n位变进制数能否与n+1个元素的全排列建立起一一对应的关系。

由于n位变进制数能表示(n+1)!个不同的数,而n+1个元素的全排列刚好有(n+1)!个不同的排列,且每一个排列都已经能表示成一个n位变进制数。如果我们能够证明任意两个不同的排列产生两个不同的变进制数,那么我们就可以得出结论:
★ 定理1 n+1个元素的全排列的每一个排列对应着一个不同的n位变进制数。

对于全排列的任意两个不同的排列p0,p1,p2,...,pn(排列P)和q0,q1,q2,...,qn(排列Q),从后往前查找第一个不相同的元素,分别记为pi和qi(0 < i <= n)。
(1)如果qi > pi,那么,
如果在排列Q中qi之前的元素x与qi构成逆序对,即有x > qi,则在排列P中pi之前也有相同元素x > pi(因为x > qi且qi > pi),即在排列P中pi之前的元素x也与pi构成逆序对,所以pi的逆序数大于等于qi的逆序数。又qi与pi在排列P中构成pi的逆序对,所以pi的逆序数大于qi的逆序数。
(2)同理,如果pi > qi,那么qi的逆序数大于pi的逆序数。
因此,由(1)和(2)知,排列P和排列Q对应的变进制数至少有第i位不相同,即全排列的任意两个不同的排列具有不同的变进制数。至此,定理1得证。

计算n个元素的一个排列的变进制数的算法大致如下(时间复杂度为O(n^2)):
template <typename T>
size_t PermutationToNumber(const T permutation[], int n)
{
    // n不能太大,否则会溢出(如果size_t为32位,则n <= 12)
    size_t result = 0;
    for (int j = 1; j < n; ++j) {
        int count = 0;
        for (int k = 0; k < j; ++k) {
            if (permutation[k] > permutation[j])
                ++count;
        }
        // factorials[j]保存着j!
        result += count * factorials[j];
    }

    return result;
}

说明:
(1)由于n!是一个很大的数,因此一般只能用于较小的n。
(2)有了计算排列的变进制数的算法,我们就可以使用一个大小为n!的数组来保存每一个排列的状态,使用排列的变进制数作为数组下标,从而实现状态的快速检索。如果只是标记状态是否出现,则可以用一位来标记状态。

最后,附上一段完整的代码来演示使用变进制数实现全排列的数化(或者Hash,随便怎么称乎了)。

2008.10.9补充:“十进制数 <--> 变进制数 <--> 排列”之间的转换算法实现如下

 

“十进制数 <--> 变进制数 <--> 排列”的之间转换实现
在“十进制数 <--> 变进制数 <--> 排列”的转换中,
(1)从十进制数到变进制数的转换方法与p进制数之间的转换类似,但区别是被除数和模数是依次是2,3,4,...n,而不是固定的p
(2)从变进制数到排列的转换算法如下:
使用一个有序的(升序)元素集合作为初始待排子集,然后按照如下过程处理:
从变进制数的高位向低位扫描,对于变进制数的每一位ai,
从当前待排子集中选出第ai+1大元素E,并把它与当前待排子集中它后面的子序列进行交换,然后从当前待排子集中去掉元素E
重复以上过程,直到所有变进制数的位扫描完毕,此时当前待排子集将刚好剩下一个元素,得到与变进制数对应的排列

“十进制数 <--> 变进制数 <--> 排列”之间的转换代码如下:
 

#include <iostream>

#include <iterator>

#include <vector>

#include <algorithm>

#include <cassert>

 

using namespace std;

 

// 把十进制数转换为变进制数,并返回变进制数的位数

// 变进制数varNumber[0]对应着变进制数的最低位

int DecimalToVariableRadix(size_t decimalNumber, vector<int> &varNumber)

{

      varNumber.clear();

 

      int carry = 2;

      while (decimalNumber > 0) {

           varNumber.push_back(decimalNumber % carry);

           decimalNumber /= carry;

           ++carry;

      }

 

      if (varNumber.empty())

           varNumber.push_back(0);

 

      return varNumber.size();

}

 

// 把十进制数转换为指定位数的变进制数(高位填充),并返回变进制数的实际有效位数

// 如果产生的变进制数的位数比指定的位数要多,则指定位数不起作用

// 变进制数varNumber[0]对应着变进制数的最低位

int DecimalToVariableRadix(size_t decimalNumber, vector<int> &varNumber, int num)

{

      varNumber.clear();

 

      int carry = 2;

      while (decimalNumber > 0) {

           varNumber.push_back(decimalNumber % carry);

           decimalNumber /= carry;

           ++carry;

      }

 

      int size = varNumber.size();

      if (size < num)

           varNumber.insert(varNumber.end(), num - size, 0);

 

      return size;

}

 

// 把变进制数转换为十进制数

// 变进制数varNumber[0]对应着变进制数的最低位

size_t VariableRadixToDecimal(const int varNumber[], int num)

{

      size_t factor = 1;

      size_t result = 0;

 

      for (int i = 0; i < num; ++i) {

           result += varNumber[i] * factor;

           factor *= i + 2;

      }

 

      return result;

}

 

// 把排列转换为变进制数,变进制数的高位可能会出现多个

// 变进制数varNumber[0]对应着变进制数的最低位

template <typename ElemType>

void PermutationToVariableRadix(const ElemType permutation[], int num, vector<int> &varNumber)

{

      for (int i = 1; i < num; ++i) {

           int count = 0;

           for (int k = 0; k < i; ++k) {

                 if (permutation[k] > permutation[i])

                      ++count;

           }

           varNumber.push_back(count);

      }

}

 

// 把变进制数转换为排列,要求传入的排列元素集合是有序的(升序)

// 并且要求变进制数的位数(包括高位的)刚好比排列元素少一

// 变进制数varNumber[0]对应着变进制数的最低位

template <typename ElemType>

void VariableRadixToPermutation(const int varNumber[], int num, ElemType perm[])

{

      for (int k = num - 1; k >= 0; --k) {

           // 交换当前待排子集中第(varNumber[k] + 1)大元素和它后面的子序列

           int m = k + 1;             // 当前待排子集中最后一个元素下标

           int j = m - varNumber[k];  // 当前待排子集中第(varNumber[k] + 1)大元素

#if 0

           // 实现std::rotate的功能

           ElemType tmp = perm[j];

           for (; j < m; ++j)

                 perm[j] = perm[j + 1];

           perm[m] = tmp;

#else

           rotate(perm + j, perm + j + 1, perm + m + 1);

#endif

      }

}

 

//

class AssureException: public std::exception

{

};

 

#define Assure(os, x) (void)((!!(x)) || (ShowFailedMessage(os, #x, __FILE__, __LINE__), 0))

 

inline void ShowFailedMessage(std::ostream &os, const char* expr, const char *file, size_t line)

{

      os << "Failed: " << expr << ", file /"" << file << "/", line " << line << '/n';

      throw AssureException();

}

 

 

void ShowUsage1()

{

      try {

           size_t num = 235;

           vector<int> varNumber;

 

           DecimalToVariableRadix(num, varNumber);

           cout << "Decimal number: " << num;

           cout << "/nConverted to variable radix number (low -> high): ";

           copy(varNumber.begin(), varNumber.end(), ostream_iterator<int>(cout, " "));

 

           size_t newNum = VariableRadixToDecimal(&varNumber[0], varNumber.size());

           cout << "/nConverted back to decimal number: " << newNum << '/n';

 

           Assure(cout, num == newNum);

           cout << endl;

      }

      catch (AssureException) {

      }

}

 

void ShowUsage2()

{

      try {

           char perm[] = {'d', 'e', 'a', 'b', 'f', 'c', 'g'};

           const int NUM = sizeof(perm) / sizeof(perm[0]);

           vector<int> varNumber;

 

           PermutationToVariableRadix(perm, NUM, varNumber);

           cout << "Permutation: ";

           copy(perm, perm + NUM, ostream_iterator<char>(cout));

           cout << "/nConverted to variable radix number (low -> high): ";

           copy(varNumber.begin(), varNumber.end(), ostream_iterator<int>(cout, " "));

 

           char newPerm[NUM] = {'a', 'b', 'c', 'd', 'e', 'f', 'g'};

           VariableRadixToPermutation(&varNumber[0], varNumber.size(), newPerm);

           cout << "/nConverted back to permutation: ";

           copy(newPerm, newPerm + NUM, ostream_iterator<char>(cout));

           cout << '/n';

 

           Assure(cout, equal(perm, perm + NUM, newPerm));

           cout << endl;

      }

      catch (AssureException) {

      }

}

 

void Test()

{

      try {

           cout << "testing /"permutation -> variable radix -> decimal -> "

                 "variable radix -> permutation/"...";

 

           const int NUM = 9;

           char perm[NUM] = {'1', '2', '3', '4', '5', '6', '7', '8', '9'};

 

           do {

                 // permutation will be  converted to variable radix number

                 vector<int> varNumber;

                 PermutationToVariableRadix(perm, NUM, varNumber);

 

                 // variable radix number will be converted to decimal number

                 size_t decimalNumber = VariableRadixToDecimal(&varNumber[0], varNumber.size());

 

                 // decimal number will be converted back to variable radix number

                 vector<int> newVarNumber;

                 DecimalToVariableRadix(decimalNumber, newVarNumber, NUM - 1);

 

                 // variable radix number will be converted back to permutation

                 char newPerm[NUM] = {'1', '2', '3', '4', '5', '6', '7', '8', '9'};

                 VariableRadixToPermutation(&newVarNumber[0], newVarNumber.size(), newPerm);

 

                 Assure(cout, equal(varNumber.begin(), varNumber.end(), newVarNumber.begin()));

                 Assure(cout, equal(perm, perm + NUM, newPerm));

           } while (next_permutation(perm, perm + NUM));

 

           cout << "done. Ok!" << endl;

      }

      catch (AssureException) {

      }

}

 

int main()

{

      ShowUsage1();

      ShowUsage2();

      Test();

}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值