目前市场上的人工智能大模型有哪些?

本文概述了截止2024年3月中旬国内外知名的人工智能大模型,包括自然语言处理(如GPT-3、BERT和通义千问)、图像生成(DALL-E)、多模态模型(CLIP和MUM)以及蛋白质结构预测(AlphaFold)等,展示了技术在不同领域的应用进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

截至最后更新时间(2024年3月中旬),以下是国内外部分知名的人工智能大模型,按类别和用途大致分类如下:

国外:

自然语言处理(NLP)大模型:
  1. OpenAI GPT系列

    • GPT-3:迄今为止最为知名的自然语言处理大模型之一,具备强大的文本生成、理解和对话能力。
    • GPT-4:后续版本,性能和参数量比GPT-3更高,各项指标均有所提升。
  2. Google的Transformer系列

    • BERT(Bidirectional Encoder Representations from Transformers):双向Transformer模型,广泛应用于各类NLP任务。
    • T5:通用文本到文本转换的Transformer模型,可在多种NLP任务上达到高性能。
    • Switch Transformer:谷歌推出的参数量极大的模型,通过开关机制实现高效运行。
  3. Meta(Facebook)的模型

    • OPT:作为GPT-3的开源替代品,具有类似的架构和能力。
    • DialoGPT:针对对话系统的预训练模型。
  4. 阿里云M6系列:虽然阿里云是中国企业,但M6等系列模型在国际市场也有竞争力,面向自然语言处理任务。

图像生成和处理大模型:
  1. DeepMind的DALL-E:能够根据文字描述生成高质量图像。
  2. Imagen:谷歌开发的文本到图像生成模型,生成图像质量极高。
多模态大模型:
  1. OpenAI的CLIP:跨模态预训练模型,将文本和图像映射到同一空间,实现跨模态检索和理解。
  2. Google的MUM:多模态统一模型,可以理解多种格式的信息,如文本、图像和视频。
其他类别的大模型:
  1. AlphaFold:DeepMind的蛋白质结构预测模型。

国内:

自然语言处理大模型:
  1. 阿里云的通义千问系列:阿里巴巴集团研发的大规模预训练模型,可用于问答、创作、对话等多种场景。

  2. 百度文心系列

    • ERNIE:百度研发的预训练模型,在多项NLP任务上取得优秀成绩。
    • PLATO:针对对话系统的预训练模型。
  3. 腾讯混元大模型系列:包括腾讯在NLP领域的多个预训练模型。

  4. 华为盘古系列模型:华为研发的预训练模型,涵盖自然语言处理等多个领域。

其他类别的大模型:
  1. 阿里云的超大规模视觉-语言模型:如通义万相等跨模态模型。

注意:由于技术发展迅速,上述列表并不全面,且可能存在新型号或更新版本,请以实际情况为准。随着技术和市场的快速发展,更多新的大模型不断出现并应用于各个领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

国货崛起

位卑未敢忘忧国,清澈的爱只为中

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值