基于毫米波的人体跟踪和识别算法

            具体的软硬件实现点击 MCU-AI技术网页_MCU-AI人工智能

准确的人类活动识别(HAR)是实现新兴的上下文感知应用程序的关键,这些应用程序需要了解和识别人类行为,例如监测独居的残疾人或老年人。传统上,HAR是通过环境传感器(例如,相机)或通过可穿戴设备(例如,具有惯性测量单元(IMU)的智能手表)来实现的。环境感测方法通常更适用于不同的环境,因为这不需要每个用户都有可穿戴设备。然而,在家庭等隐私敏感区域使用相机可能会捕捉到用户可能不愿意分享的多余环境信息。雷达已被提议作为粗粒度活动识别的替代模式,使用微多普勒频谱图捕捉环境信息的最小子集。然而,由于低成本毫米波雷达系统产生稀疏和不均匀的点云,训练细粒度、准确的活动分类器是一个挑战。在本文中,我们提出了RadHAR,这是一种使用稀疏和非均匀点云执行精确HAR的框架。RadHAR利用滑动时间窗口来累积毫米波雷达的点云,并生成体素化表示,作为分类器的输入。

我们在收集的具有5种不同活动的人类活动数据集上评估和演示了我们的系统。我们在数据集上比较了各种分类器的准确度,发现性能最好的深度学习分类器的准确率为90.47%。我们的评估显示了使用毫米波雷达进行精确HAR检测的有效性,并列举了该领域未来的研究方向。

毫米波(mmWave)技术在频率范围为30GHz和300GHz。由于,天线尺寸与频率成反比,频率越高在频谱中,天线的尺寸越小。因此,毫米波雷达在尺寸上是紧凑的。而且我们可以把大量的天线组装成一个非常小的实现高定向波束形成的空间(≈1◦角度精度&

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值