Precision,Recall和F1

比如预测是否是癌症病人,假设1000个人里面只有一个,即比例分别为99.9%和0.1%。
这时如果设计的预测系统不经数据分析,全部预测为正常人,仍然会有99.9%的准确率。这显然是不合理的。所以就出现了precision、recall、Fscore这三个评估值。
定义如下:

根据定义,如果还是全部预测为正常人的话,上面precision和recall值就会都是0,便可以发现了系统设计的问题。
至于Fscore=2PR/(P+R),就是两个判断依据的权衡,用一个标准来衡量系统性能。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值