分类问题中的评价指标(F1-Score、Micro-F1、Macro-F1)

四个基本概念

这四个基本概念理解起来很简单,但是老是忘记,记录一下:

TP(真阳性):预测为正,实际也为正

FP(假阳性):预测为正,实际为负

FN(假阴性):预测与负、实际为正

TN(真阴性):预测为负、实际也为负


精确率和召回率

我们假设对癌症预测,在所有的样本数据中,真实患癌症的人非常少,大概只有0.5%的概率,一般这样的问题称为偏斜类

对于这种类型的问题,可能一个只输出y=1(没有患癌症的人)的函数都比你的模型准确。

所以引入了准确率P和召回率R,对于稀有的样本有:

精确率 P = T P 真阳性 T P 真阳性 + F P 假阳性 \frac{TP真阳性}{TP真阳性 + FP假阳性} TP真阳性+FP假阳性TP真阳性

召回率 R = T P 真阳性 T P 真阳性 + F N 假阴性 \frac{TP真阳性}{TP真阳性+FN假阴性} TP真阳性+FN假阴性TP真阳性


F1 Score

对于上面的癌症预测问题,我们引入了准确率P和召回率R之后,则可以用F1分数(调和平均数)来衡量模型的好坏,这是统计学中用来衡量二分类模型精确度的一种常用指标。它的值最大是1,最小是0。

F1 score会比较照顾数值小的一方,如果PR都为0,F1 score=0;如果PR都为1,F1 score=1

F1 Score: 2 ∗ P R P + R 2*\frac{PR}{P+R} 2P+RPR


Micro-F1和Macro-F1

在多标签分类任务中,可以对每个“类”,计算F1分数往往不够,显然需要把所有类的F1分数合并起来考虑,所以这里引入Micro-F1和Macro-F1。

Micro-F1(微平均):计算出所有类别总的Precision和Recall,然后计算F1

Macro-F1(宏平均):计算出每一个类的Precison和Recall后计算F1,最后将F1平均

Micro-F1和Macro-F1这两个评价指标非常常用,是许多经典模型在实验中所选择的评价指标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听弧丶

你的鼓励将是我最大的前进动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值