课程作业:基于 Python 控制台的机器学习算法的热点景区人流量预测数据分析系统

1. 项目目标

本项目的目的是通过使用机器学习算法,基于天气、节假日、地理位置等因素,预测热门景区的游客人流量。通过模型训练、预测和结果可视化,帮助我们分析哪些因素对游客数量的影响最大。

2. 使用技术栈
  • 编程语言:Python
  • 机器学习框架:scikit-learn
  • 可视化库:Matplotlib, Seaborn
  • 数据处理库:Pandas, Numpy
3. 项目结构
  • 数据集:模拟一个热点景区的人流量数据集,包含影响人流量的不同因素(如天气、节假日、景区位置等)。
  • 数据预处理:进行数据清洗、缺失值处理、特征选择等。
  • 模型训练:使用线性回归模型和随机森林回归模型进行预测。
  • 模型评估与可视化:评估模型的准确度并进行可视化展示。
4. 数据集模拟

本示例使用一个假设的景区人流量数据集,该数据集包括天气、节假日等因素对景区人流量的影响。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码空间站TH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值