1. 项目目标
本项目的目的是通过使用机器学习算法,基于天气、节假日、地理位置等因素,预测热门景区的游客人流量。通过模型训练、预测和结果可视化,帮助我们分析哪些因素对游客数量的影响最大。
2. 使用技术栈
- 编程语言:Python
- 机器学习框架:scikit-learn
- 可视化库:Matplotlib, Seaborn
- 数据处理库:Pandas, Numpy
3. 项目结构
- 数据集:模拟一个热点景区的人流量数据集,包含影响人流量的不同因素(如天气、节假日、景区位置等)。
- 数据预处理:进行数据清洗、缺失值处理、特征选择等。
- 模型训练:使用线性回归模型和随机森林回归模型进行预测。
- 模型评估与可视化:评估模型的准确度并进行可视化展示。
4. 数据集模拟
本示例使用一个假设的景区人流量数据集,该数据集包括天气、节假日等因素对景区人流量的影响。
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model