yolov4-tiny训练数据集用于gazebo平台的无人机识别(1)

本文介绍了如何在Gazebo仿真环境中,通过YOLOv4Tiny模型对iris四旋翼无人机进行目标检测的训练过程,包括下载和编译darknet、准备数据集、标注并转换数据格式以及配置和启动训练。
摘要由CSDN通过智能技术生成

 参考文档:(tiny) YOLOv4 详细训练指南(附下载链接)_yolov4_tiny 预训练模型下载-CSDN博客

                   目标检测与跟踪 (yuque.com)

由于需要在gazebo上识别仿真平台提供的iris四旋翼无人机,需要对其建立数据集并训练自己的.weights文件

1.下载编译darknet并准备训练环境

2.标注数据集并调整格式

3.修改配置开始训练

下载编译darknet
cd ~
git clone https://github.com/AlexeyAB/darknet.git

编辑Makefile

cd ~/darknet
gedit Makefile

以下是我的设置:

其中,GPU和CUDNN是GPU加速,CUDNN_HALF是特定硬件加速,OPENCV是否使用OpenCV,AVX和OPENMP是CPU加速。

make -j8
#or
make
准备训练环境

截取gazebo平台中的iris模型用作识别(其他数据集亦可自行仿照标注)

点击右上角照相机截图,或是利用系统自带的截图工具截图

安装labelme进行标注

sudo apt-get install labelme
# or
sudo pip3 install labelme

labelme #打开labelme进行标注

准备的数据文件应如下:

----VOCdevkit\
    |----VOC2007\	# 目录
    |    |----Annotations\
    |    |    |----00000001.xml	# 图片标注信息
    |    |----ImageSets\
    |    |    |----Main\	# 训练:验证:测试=1:1:2
    |    |    |    |----test.txt	# 测试集
    |    |    |    |----train.txt	# 训练集
    |    |    |    |----val.txt	# 验证集
    |    |----JPEGImages\
    |    |    |----00000001.jpg	# 对应图片

于darknet文件夹中创建训练数据文件夹

cd ~/darknet
mkdir -p train_data/VOCdevkit/VOC2007/Annotations train_data/VOCdevkit/VOC2007/ImageSets/Main train_data/VOCdevkit/VOC2007/JPEGImages

将截图的文件放到~/darknet/train_data/VOCdevkit/VOC2007/JPEGImages

由于labelme生成的文件为.json,训练需要的是.xml格式文件,需要将.json转换为.xml

mkdir -p ~/darknet/train_data/VOCdevkit/VOC2007/Json #建立Json文件夹保存.json文件

2.标注数据集并调整格式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值