Python 数据清洗学习笔记(处理重复数据和缺失数据)

本文介绍了Python中使用pandas处理数据重复和缺失值的方法。针对重复数据,利用duplicated和drop_duplicates进行检查与去重;对于缺失值,根据其产生原因和比例选择均值、中位数或众数填补,或创建指示变量参与建模。还展示了使用lambda函数检查缺失值占比及fillna方法的填充策略。
摘要由CSDN通过智能技术生成

 

学习原处链接:https://blog.csdn.net/zw0Pi8G5C1x/article/details/84610050/

                         https://www.jianshu.com/p/a93fe1423bc5


1.数据重复

panadas提供查看、处理重复数据的方法duplicated和drop_duplicates。

duplicated可以查看重复的数据。

drop_duplicates方法可以去重。

 

2.缺失数据处理

缺失值一般有NA表示,在处理缺失值时要遵循一定的原则。

首先应弄清缺失值产生的原因,再通过经验进行填补。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值