python数据清洗学习笔记--数据预处理

27 篇文章 7 订阅
7 篇文章 0 订阅

python数据清洗学习笔记–数据预处理

1、重复值处理

• 数据清洗一般先从重复值和缺失值开始处理

• 重复值一般采取删除法来处理

• 但有些重复值不能删除,例如订单明细数据或交易明细数据等

df[df.duplicated()]
np.sum(df.duplicated()) 
df.drop_duplicates() 
df.drop_duplicates(subset=['column1_name','column2_name'],inplace=True)
 

2、缺失值处理

• 缺失值首先需要根据实际情况定义

• 可以采取直接删除法

• 有时候需要使用替换法或者插值法

• 常用的替换法有均值替换、前向、后向替换和常数替换

df.age.fillna(df.column_name.mean())
df.age.fillna(df.column_name.median())
df.fillna(20) 
#缺失比例
df.apply(lambda x: sum(x.isnull())/len(x),axis= 0) 

#删除法
#直接删除法
df.dropna()

#只要有缺失,就删除这一列
df.dropna(how='any',axis = 1 ) 

#只要有缺失,就删除这一行,等价于df.dropna()
df.dropna(how='any',axis = 0) 
#axis = 0 或者 1代表的函数在数据集作用的方向,0代表沿着行的方向,1代表沿着列的方向

# 1代表列,0代表行,只要有缺失,就删除这一行,基于三个变量
df.dropna(axis = 0,how='any',subset=['column1_name','column2_name','column3_name'])  
 

在数据分析中,实际上大部分时候都是按照行来进行删除的,很少会基于列来进行删除 列代表的是变量,是否删除删除列很多时候主要取决于缺失比例

使用替换法进行缺失值的填补

# 用均值填补
df.column_name.fillna(df.column_name.mean())

#中位数填补
df.column_name.fillna(df.column_name.median())

#众数填补
df.column_name.fillna(df.column_name.mode()[0])

# 所有缺失用20填补
df.fillna(20)

#前向填补
df['column_name'].fillna(method='ffill')

#后向填补
df['column_name'].fillna(method='bfill')

3、异常值处理

• 指那些偏离正常范围的值,不是错误值

• 异常值出现频率较低,但又会对实际项目分析造成偏差

• 异常值一般用过箱线图法(分位差法)或者分布图(标准差法)来判断

• 异常值往往采取盖帽法或者数据离散化

在这里插入图片描述

异常值检测可以使用均值的2倍标准差范围,也可以使用上下4分位数差方法

# 异常值检测之标准差法
xbar = df.Price.mean()
xstd = df.Price.std()

print('标准差法异常值上限检测:\n', any(df.Price > xbar + 2.5 * xstd))
print('标准差法异常值下限检测:\n', any(df.Price < xbar - 2.5 * xstd))
#异常值检测之箱线图法
Q1 = df.Price.quantile(q = 0.25)
Q3 = df.Price.quantile(q = 0.75)
IQR = Q3 - Q1

print('箱线图法异常值上限检测:\n',any(df.Price > Q3 + 1.5 * IQR))
print('箱线图法异常值下限检测:\n',any(df.Price < Q1 - 1.5 * IQR))
# 进行描述性统计
df.Price.describe()
df.Price.describe(percentiles=[0.2, 0.8])
 
#绘制box图形
import matplotlib.pyplot as plt
%matplotlib inline
df.Price.plot(kind='box')
#绘制直方图和密度图
# 导入绘图模块
import matplotlib.pyplot as plt
%matplotlib inline
# 设置绘图风格
plt.style.use('seaborn')
# 绘制直方图
df.Price.plot(kind='hist', bins=30, density=True)
# 绘制核密度图
df.Price.plot(kind='kde')
# 图形展现
plt.show()
# 用99分位数和1分位数替换
#计算P1和P99
P1 = df.Price.quantile(0.01)
P99 = df.Price.quantile(0.99)
#先创建一个新变量,进行赋值,然后将满足条件的数据进行替换
df['Price_new'] = df['Price']
df.loc[df['Price'] > P99,'Price_new']  = P99
df.loc[df['Price'] < P1,'Price_new']  = P1

#对比处理结果
df[['Price','Price_new']].describe()
 

4、数据离散化处理

• 数据离散化就是分箱

• 一般常用分箱方法是等频分箱或者等宽分箱

• 一般使用pd.cut或者pd.qcut函数

4-1、等宽分箱

pandas.cut(x,bins,right=True,labels)

pandas.cut(x,bins,right=True,labels)

  • x: 数据

  • bins: 离散化的数目,或者切分的区间

  • labels: 离散化后各个类别的标签

  • right: 是否包含区间右边的值

df['column_name'] =  pd.cut(df['column_name'],5,labels=range(5))
df['age_bin'] =  pd.cut(df['age_new'],5,labels=range(5))
df['age_bin'].hist()
#自定义bin
w = [100, 1000, 5000, 10000, 20000, 50000]
df['Price_bin'] = pd.cut(df['Price'],
                         bins=w,
                         labels=['低','便宜','划算','中等','高'],
                         right=False)

df['Price_bin'].value_counts()
pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

参数:

  • x, 类array对象,且必须为一维,待切割的原形式

  • bins, 整数、序列尺度、或间隔索引。如果bins是一个整数,它定义了x宽度范围内的等宽面元数量,但是在这种情况下,x的范围在每个边上被延长1%,以保证包括x的最小值或最大值。如果bin是序列,它定义了允许非均匀bin宽度的bin边缘。在这种情况下没有x的范围的扩展。

  • right, 布尔值。是否是左开右闭区间,right=True,左开右闭,right=False,左闭右开

  • labels, 用作结果箱的标签。必须与结果箱相同长度。如果FALSE,只返回整数指标面元

  • retbins, 布尔值。是否返回面元

  • precision, 整数。返回面元的小数点几位

  • include_lowest,布尔值。第一个区间的左端点是否包含

4-2、等频分箱

pandas.qcut(x, q, labels=None, retbins=False, precision=3, duplicates=raise) 

pandas.qcut(x, q, labels=None, retbins=False, precision=3, duplicates=’raise’)

参数:

  • x

  • q, 整数或分位数数组 整数比如 4 代表按照4分位数进行切割

  • labels, 用作结果箱的标签。必须与结果箱相同长度。如果FALSE,只返回整数指标面元。

#方法1
k = 5
w = [1.0*i/k for i in range(k+1)] 

df['Price_bin'] = pd.qcut(df['Price_new'],w,labels=range(k))
df['Price_bin'].hist()
 
#方法2
#先计算分位数的值
k = 5
w1 = df['Price_new'].quantile([1.0*i/k for i in range(k+1)])#先计算分位数,再进行分段
w1[0] = w1[0]* 0.98 # 最小值缩小一点
w[-1] = w1[1]* 1.02 # 将最大值增大一点, 目的是为了确保数据在这个范围内

df['Price_bin'] = pd.cut(df['Price_new'],w1,labels=range(k))
df['Price_bin'].hist()
 

原理都是基于分位数来进行离散化

记录自:python数据清洗实战:Peter老师

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值