1.题目
Learning from Noisy Labels with Deep Neural Networks: A Survey
作者团队:韩国科学技术院(KAIST)
Song H , Kim M , Park D , et al. Learning from Noisy Labels with Deep Neural Networks: A Survey. 2020.
2. 摘要
-
重述问题:从监督学习的角度来描述使用标签噪声学习的问题;
-
方法回顾:对57种最先进的鲁棒训练方法进行了全面的回顾,并根据其方法差异分为5组;然后系统地比较了六种属性来评估它们的优越性;
-
评估:对噪声率估计进行了深入的分析,并总结了典型使用的评估方法,包括公共噪声数据集和评估指标;
-
总结:我们提出了几个很有前途的研究方向。
3. 研究Noise Learn的意义
对比了三种情况,第一种是clean数据的训练情况;第二种是noise数据没有加入Reg(正则化)的情况;第三种是noise数据加入了Reg的情况;一般情况下我们想方设法去处理正则的内容(data augmentation,weight decay,dropout, batch normalization),可是noise的影响也是很大的,像图中的Gap.
4. 目前的相关综述
Frenay and Verleysen [12] —Classifification in the presence of label noise: A survey-2013–经典的监督学习(说明了noise的定义,来源等等相关内容。Bayes,SVM)—讲述了noise学习的统计学习;
Zhang et al. [27]—Learning from crowdsourced labeled data: A survey–2016-- 讨论众包数据方法(expectation maximization (EM) algorithms)—其实这是不错的一篇综述,工程上挺有用的,众包情景就是一个好的情境。
这篇论文可以结合弱监督的论文来看,特征在后面的推理Ground truth那里。
工具:The project CEKA is available at: http://ceka.sourceforge.net/
Nigam et al.[28] -Impact of noisy labels in learning techniques: A survey- 2020-- 局限在 the loss function and sample selection 两方面
Hanet al. [29] --A survey of label-noise representation learning: Past,present and future-- 2020-- 总结了带有噪声标签的robust学习的基本组成部分,但它们的分类与我们的哲学分类完全不同;从机器学习的定义出去去讲述Noise学习的问题,对于理解机器学习有很帮助的一篇文章,之前也看到篇相关的,忘记哪篇了,也是从机器学习定义出发去讲述一件事情;
- 给出LNRL的定义;
- 从学习理论的视角对Noise训练有更深一层的理解;
- 从数据、目标,优化算子的角度进行了分类;并分析了各类的优缺点;
- 提出了新的研究方法;
- https://github.com/bhanML/label-noise-papers
这篇文章写得也比较清淅的:
第1节,引言;写作动机与贡献,文章组织情况;
第2节写了Lable-Noise学习的相关文献,完整版本见附录1(早期(1988开始)–Emerging Stage(2015)-- Flourished Stage(2019));
第3节综述的概述,包括LNRL的正式定义、核心问题,以及根据数据、目标和优化对现有工作的分类;
第4节针对利用噪声转换矩阵来求解LNRL的方法;
第5节是关于修改目标函数以使LNRL可行的方法;
第6节是关于利用深度网络的特性来解决LNRL问题的方法;
在第7节中,我们提出了LNRL的未来发展方向。除了LNRL之外,该调查还揭示了几个很有前途的未来方向;
在第8节,总结;
对于数据,主要是一个Noise transition matrix T,T提示了clean标注与noise标注的关系;使用三种方法去使用T来处理Noise标注;
5. 预备知识
这篇综述主要是在系统的方法论上,[29]关注的是一般的视角上( input data, objective functions, optimization policies);
这个综述对存在的robust训练方法作了一个对比;
5.0 lable-noise的监督学习;
5.1 标签噪声分类
a.独立于实例的标签噪声;
b.依赖实例的标签噪声;
5.2 非深度学习方法—分成四类
a. 数据清洗;
b. Surrogate Loss(代理损失函数)
c. 概率方法
d. 基于模型方法
5.3 理论基础
a.Label Transition: 从数据的角度来看,noise是来源于label的转移矩阵;这个转移矩阵可以发现其中的内在关系;
b. Risk Minimization
c. Memorization Effect
5.4 Regression with Noisy Labels
6. 深度学习方法
深度学习的robust训练(分为5类):
它的关注点是深度学习在监督学习过程中更robust.
(P1) Flexibility,(P2) No Pre-training,(P3) Full Exploration,(P4) No Supervision,(P5) Heavy Noise,(P6) Complex Noise
圆圈:完全支持,叉:不支持,三角:支持但不完全支持
6.1 Robust框架
在DNN上增加一个Noise适应层去学习label transition,或开了一个专用架构来处理;
6.1.A Noise Adaptation Layer
这个方法的原理:
论文:Training deep neural-networks using a noise adaptation layer,” in Proc. ICLR, 2017.
这论文采用了EM算法来处理,理论性学是比较强的。
A.1. Noise Adaptation Layer
A.2. Dedicated Architecture(专门架构)
Year | Venue | Title | Implementation | |
---|---|---|---|---|
2015 | CVPR | Learning from massive noisy labeled data for image classification | Official (Caffe) | 管理了两个独立的网络 |
2018 | NeurIPS | Masking: A new perspective of noisy supervision | Official (TensorFlow) | 人工辅助的方法 |
2018 | TIP | Deep learning from noisy image labels with quality embedding | N/A | |
2019 | ICML | Robust inference via generative classifiers for handling noisy labels | Official (PyTorch) |
6.2 Robust正则化
B.1. Explicit Regularization
B.2. Implicit Regularization
C. Robust Loss Function
6.D 损失函数调整
改进损失函数;
D.1. Loss Correction
D.2. Loss Reweighting
Year | Venue | Title | Implementation |
---|---|---|---|
2017 | TNNLS | Multiclass learning with partially corrupted labels | Unofficial (PyTorch) |
2017 | NeurIPS | Active Bias: Training more accurate neural networks by emphasizing high variance samples | Unofficial (TensorFlow) |
D.3. Label Refurbishment
D.4. Meta Learning
6.4 样本选择
通过多网络或多轮学习,从有噪声的训练数据中识别true-labeled的样本。
E.1. Multi-network Learning – 多网络学习
E.2. Multi-round Learning–多轮学习方法
E.3. Hybrid Learning
7. 数据集
8. 总结
其实弱监督学习,noise学习,主动学习,出发点都是想去解决语料的问题。弱监督是想在没有标准的数据上进行自动标注,然后对这些标注进行软合并;noise学习,解决标注出来数据的noise问题;主动学习,就是用机器到已标注的数据进行学习,对未标注的样本进行估计,目前是想用直可能标注的样本数据来代替整个样本集的内容。
可是发现,很多领域都是在处理图像的,自然语言是否可以考虑?
9. 参考
论文:https://arxiv.org/pdf/2007.08199.pdf
相关资料: https://github.com/songhwanjun/Awesome-Noisy-Labels
附:
LNRL: Label-Noise Representation Learning
LNSL: label-noise statistical learning
surrogate loss function:代理损失函数或者称为替代损失函数,一般是指当目标函数非凸、不连续时,数学性质不好,优化起来比较复杂,这时候需要使用其他的性能较好的函数进行替换。
ICCV 的全称是 IEEE International Conference on Computer Vision,即国际计算机视觉大会
ICDM(国际数据挖掘会议)
IEEE国际声学、语言和信号处理会议(ICASSP)
国际学习表征会议(International Conference On Learning Representations)