泛函分析基础11-线性算子的谱5:弗雷德霍姆算子与指标

紧算子理论最初产生于线性积分方程 ( I − T ) φ = f ( I - T ) \varphi = f (IT)φ=f的可解性研究中,其中 T T T 是积分算子.有些奇异积分算子不是紧算子,但与紧算子一样有着广泛的运用,抽象地考虑,它们都属于弗雷德霍姆( Fredholm)算子类

定义1

T ∈ B ( H ) . T \in \mathscr { B } ( H ) . TB(H). 如果 T T T 满足下列条件:
(1) R ( T ) \mathscr { R } ( T ) R(T) H H H 中闭;
(2) dim ⁡ N ( T ) < ∞ , dim ⁡ N ( T ∗ ) < ∞ , \operatorname { d i m } \mathscr { N } ( T ) < \infty , \operatorname { d i m } \mathscr { N } \left( T ^ { * } \right) < \infty , dimN(T)<,dimN(T)<,

则称 T T T 为弗雷德霍姆算子。

Fred ⁡ ( H ) \operatorname { F r e d } ( H ) Fred(H) 表示 B ( H ) \mathscr { B } ( H ) B(H)中弗雷德霍姆算子全体.

定理1

T ∈ B ( H ) . T \in \mathscr { B } ( H ) . TB(H).

  • (1) 如果 T ∈ Fred ⁡ ( H ) , T \in \operatorname { F r e d } ( H ) , TFred(H), 则存在 S ∈ B ( H ) S \in \mathscr { B } ( H ) SB(H) 使得 S T = I − P , T S = I − Q , S T = I - P , T S = I - Q , ST=IP,TS=IQ, 其中 P : H → P : H \rightarrow P:H N ( T ) , Q : H → N ( T ∗ ) \mathscr { N } ( T ) , Q : H \rightarrow \mathscr { N } \left( T ^ { * } \right) N(T),Q:HN(T)是投影算子;
  • (2) 若存在 B 1 , B 2 ∈ B ( H ) B _ { 1 } , B _ { 2 } \in \mathscr { B } ( H ) B1,B2B(H) 及全连续算子 K 1 , K 2 : H → H K _ { 1 } , K _ { 2 } : H \rightarrow H K1,K2:HH 使得 B 1 T = I + K 1 , T B 2 = I + B _ { 1 } T = I + K _ { 1 } , T B _ { 2 } = I + B1T=I+K1,TB2=I+ K 2 , K _ { 2 } , K2, T ∈ Fred ⁡ ( H ) . T \in \operatorname { F r e d } ( H ) . TFred(H).

证明
(1)
此时 R ( T ) \mathscr { R } ( T ) R(T) 闭, N ( T ) \mathscr { N } ( T ) N(T) N ( T ∗ ) \mathscr { N } \left( T ^ { * } \right) N(T) 都是有限维的.定义 N ( T ) ⊥ \mathscr { N } ( T ) ^ { \perp } N(T) R ( T ) \mathscr { R } ( T ) R(T) 的线性算子 T 1 x = T x , ∀ x ∈ N ( T ) ⊥ . T _ { 1 } x = T x , \forall x \in \mathscr { N } ( T ) ^ { \perp } . T1x=Tx,xN(T).

T 1 ∈ B ( N ( T ) ⊥ , R ( T ) ) , N ( T 1 ) = { 0 } 以及 R ( T 1 ) = R ( T ) . T _ { 1 } \in \mathscr { B } ( \mathscr { N } ( T ) ^ { \perp } , \mathscr { R } ( T ) ) , \mathscr { N } \left( T _ { 1 } \right) = \{ 0 \} 以及 \mathscr { R } \left( T _ { 1 } \right) = \mathscr { R } ( T ) . T1B(N(T),R(T)),N(T1)={ 0}以及R(T1)=R(T).

由于 N ( T ) ⊥ \mathscr { N } ( T ) ^ { \perp } N(T) R ( T ) \mathscr { R } ( T ) R(T)都是完备的,所以由逆算子定理,存在 R ( T ) \mathscr { R } ( T ) R(T) N ( T ) ⊥ \mathscr { N } ( T ) ^ { \perp } N(T) 的有界线性算子 T 2 T _ { 2 } T2 使得

T 2 T 1 x = x , ∀ x ∈ N ( T ) 1 , T 1 T 2 y = y , ∀ y ∈ R ( T ) . T _ { 2 } T _ { 1 } x = x , \forall x \in \mathscr { N } ( T ) ^ { 1 } , \quad T _ { 1 } T _ { 2 } y = y , \forall y \in \mathscr { R } ( T ) . T2T1x=x,xN(T)1,T1T2y=y,yR(T).

由于 I − P I - P IP H H H N ( T ) 1 \mathcal { N } ( T ) ^ { 1 } N(T)1 的投影算子 I − Q I - Q IQ H H H N ( T ∗ ) ⊥ = R ( T ) \mathscr { N } \left( T ^ { * } \right) ^ { \perp } = \mathscr { R } ( T ) N(T)=R(T)的投影算子.t S = ( I − P ) T 2 ( I − Q ) , S = ( I - P ) T _ { 2 } ( I - Q ) , S=(IP)T2(IQ), 便得到

S ∈ B ( H ) , S T = I − P , T S = I − Q . S \in \mathscr { B } ( H ) , S T = I - P , T S = I - Q . SB(H),ST=IP,TS=IQ.

(2)
B 1 T = I + K 1 B _ { 1 } T = I + K _ { 1 } B1T=I+K1 可得 N ( T ) ⊂ N ( I + K 1 ) . \mathscr { N } ( T ) \subset \mathscr { N } \left( I + K _ { 1 } \right) . N(T)N(I+K1). T B 2 = I + K 2 T B _ { 2 } = I + K _ { 2 } TB2=I+K2 B 2 ∗ T ∗ = I + K 2 ∗ , B _ { 2 } ^ { * } T ^ { * } = I + K _ { 2 } ^ { * } , B2T=I+K2, N ( T ∗ ) ⊂ N ( I + K 2 ∗ ) . \mathscr { N } \left( T ^ { * } \right) \subset \mathscr { N } \left( I + K _ { 2 } ^ { * } \right) . N(T)N(I+K2).再由 S \mathrm { S } S 4的推论1得到: dim ⁡ N ( T ) < ∞ , dim ⁡ N ( T ∗ ) < ∞ . \operatorname { d i m } \mathscr { N } ( T ) < \infty , \operatorname { d i m } \mathscr { N } \left( T ^ { * } \right) < \infty . dimN(T)<,dimN(T)<∞.

注意到 R ( T B 2 ) ⊂ R ( T ) , \mathscr { R } \left( T B _ { 2 } \right) \subset \mathscr { R } ( T ) , R(TB2)R(T),故由第九章 S \mathrm { S } S 2的定理2知,对任意 y ∈ R ( T ) , y y \in \mathscr { R } ( T ) , y yR(T),y 可分解为 y = y 1 + y 2 , y = y _ { 1 } + y _ { 2 } , y=y1+y2, 其中 y 1 ∈ R ( T B 2 ) , y 2 ∈ R ( T B 2 ) 1 . y _ { 1 } \in \mathscr { R } \left( T B _ { 2 } \right) , y _ { 2 } \in \mathscr { R } \left( T B _ { 2 } \right) ^ { 1 } . y1R(TB2),y2R(TB2)1.进而 y 2 ∈ R ( T ) ∩ R ( T B 2 ) 1 , y _ { 2 } \in \mathscr { R } ( T ) \cap \mathscr { R } \left( T B _ { 2 } \right) ^ { 1 } , y2R(T)R(TB2)1,最后可得

R ( T B 2 ) + R ( T ) ∩ R ( T B 2 ) ⊥ = R ( T ) , R ( T B 2 ) ∩ ( R ⁢ ( T ) ∩ R ( T B 2 ) ⊥ ) = { 0 } . \begin{aligned} \mathscr { R } \left( T B _ { 2 } \right) + \mathscr { R } ( T ) \cap \mathscr { R } \left( T B _ { 2 } \right) ^ { \perp } = \mathscr { R } ( T ) , \\ ℛ\left(TB_{2}\right) \cap \left(ℛ⁢\left(T\right) \cap ℛ\left(TB_{2}\right)^{ \perp }\right) = \left\{0\right\}. \end{aligned} R(TB2)+R(T)R(TB2)=R(T),R(TB2)(R(T)R(TB2))={ 0}.

s \mathrm { s } s 4的推论1, R ( T B 2 ) 1 = N ( I + K 2 ∗ ) \mathscr { R } \left( T B _ { 2 } \right) ^ { 1 } = \mathscr { N } \left( I + K _ { 2 } ^ { * } \right) R(TB2)1=N(I+K2)是有限维的,而且 R ( T B 2 ) \mathscr { R } \left( T B _ { 2 } \right) R(TB2)闭,于是由第七章习题24可知, R ( T ) \mathscr { R } ( T ) R(T) 闭.

综上所述,根据定义1, T T T 是弗雷德霍姆算子.

定义2

T ∈ Fred ⁡ ( H ) ⋅ dim ⁡ N ( T ) − dim ⁡ N ( T ∗ ) T \in \operatorname { F r e d } ( H ) \cdot \operatorname { d i m } \mathcal { N } ( T ) - \operatorname { d i m } \mathcal { N } \left( T ^ { * } \right) TFred(H)dimN(T)dimN(T) 称为 T T T 的弗雷德霍姆指标,记为 ind ⁡ ( T ) . \operatorname { i n d } ( T ) . ind(T).

定理2

T ∈ Fred ⁡ ( H ) , τ T \in \operatorname { F r e d } ( H ) , \tau TFred(H),τ Y ( H ) \mathscr { Y } ( H ) Y(H) 上的迹.若存在 B ∈ B ( H ) B \in \mathscr { B } ( H ) BB(H) F 1 , F 2 ∈ I ( H ) F _ { 1 } , F _ { 2 } \in \mathscr { I } ( H ) F1,F2I(H) 使得 B T = I + F 1 , T B = I + F 2 . B T = I + F _ { 1 } , T B = I + F _ { 2 } . BT=I+F1,TB=I+F2. ind ⁡ ( T ) = τ ( T B − B T ) . \operatorname { i n d } ( T ) = \tau ( T B - B T ) . ind(T)=τ(TBBT).

证明
由定理1(1),存在 A ∈ B ( H ) A \in \mathscr { B } ( H ) AB(H) 使得 A T = I − P , T A = I − Q , A T = I - P , T A = I - Q , AT=IP,TA=IQ, 其中 P , Q P , Q P,Q 分别是 H H H N ( T ) \mathcal { N } ( T ) N(T) N ( T ∗ ) \mathscr { N } \left( T ^ { * } \right) N(T)的投影算子.于是由 B T = I + F 1 , T B = I + F 2 , B T = I + F _ { 1 } , T B = I + F _ { 2 } , BT=I+F1,TB=I+F2, 得到 B = A + A F 2 + P B , B = A + A F _ { 2 } + P B , B=A+AF2+PB,

T B − B T

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值