泛函分析基础11-线性算子的谱1:谱的概念

谱论是泛函分析的重要分支之一.线性代数告诉我们:有限维空间上的线性算子由它的特征值和最小多项式完全确定.将这一结论推广到有界线性算子的情况,研究它的结构,就是算子的谱理论所谓算子的"谱",类似于有限维空间上算子—一矩阵的特征值.而无限维空间上的算子谱论,也就相当于把矩阵化为若尔当标准形.由于特征值和逆算子有密切关系,谱论也大量涉及逆算子的问题.将算子求逆应用到微分算子和积分算子上,推动了微分方程和积分方程的发展.

在一般无限维巴拿赫空间中与有限维空间上线性算子性质最接近的算子是全连续算子.全连续算子及其谱是人们研究得最为清楚的一类算子.这类算子最初来源于积分方程的研究.这一章中我们介绍全连续算子的谱性质和自伴全连续算子的谱分解理论并举例说明它如何应用于具有对称核积分方程的求解.本章最后一节,我们讨论弗雷德霍姆( Fredholm)算子与指标的性质.这些内容是著名的阿蒂亚一辛格( Atiyah- Singer)指标定理的基础


考察 n n n 个未知数的线性方程组:

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = y 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = y 2 , ⋯ ⋯ ⋯ ⋯ ⋯ ( 1 ) a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = y n , \left\{ \begin{array} { l } a _ { 1 1 } x _ { 1 } + a _ { 1 2 } x _ { 2 } + \cdots + a _ { 1 n } x _ { n } = y _ { 1 } , \\ a _ { 2 1 } x _ { 1 } + a _ { 2 2 } x _ { 2 } + \cdots + a _ { 2 n } x _ { n } = y _ { 2 } , \\ \cdots \cdots \cdots \cdots \cdots \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(1)\\ a _ { n 1 } x _ { 1 } + a _ { n 2 } x _ { 2 } + \cdots + a _ { n n } x _ { n } = y _ { n } , \end{array} \right. a11x1+a12x2++a1nxn=y1,a21x1+a22x2++a2nxn=y2,⋯⋯⋯⋯⋯(1)an1x1+an2x2++annxn=yn,

它对应系数矩阵 A = ( a i j ) . A = \left( a _ { i j } \right) . A=(aij). x = ( x 1 , x 2 , ⋯   , x n ) , y = ( y 1 , y 2 , ⋯   , y n ) , x = \left( x _ { 1 } , x _ { 2 } , \cdots , x _ { n } \right) , y = \left( y _ { 1 } , y _ { 2 } , \cdots , y _ { n } \right) , x=(x1,x2,,xn),y=(y1,y2,,yn),则上述方程表示 n n n维空间 E n E ^ { n } En 上 的线性算子 A A A 满足: A x = y . A x = y . Ax=y. 对复数 λ , \lambda , λ, 若存在 x ≠ 0 , x \neq 0 , x=0, 使 A x = λ x , A x = \lambda x , Ax=λx, 则称 λ \lambda λ A A A的特征值.它意味着 ( A − λ I ) x = 0 ( A - \lambda I ) x = 0 (AλI)x=0 有非零解,即算子 ( A − λ I ) ( A - \lambda I ) (AλI) 不存在逆算子.因此,我们为了弄清算子 A A A 的特征值,必须考察算子 ( A − λ I ) ( A - \lambda I ) (AλI)是否有逆算子的问题。

现在我们转向讨论无限维的情形

定义1

X X X 是赋范线性空间, T ∈ B ( X ) . T \in \mathscr { B } ( X ) . TB(X). T − 1 T ^ { - 1 } T1 存在且是定义在整个 X X X 上的有界线性算子,则称 T T T X X X 上 的正则算子

关于正则算子有以下的简单性质

1 ∘ T 1 ^ { \circ } T 1T 是正则算子的充要条件是存在有界算子 B ∈ B ( X ) , B \in \mathscr { B } ( X ) , BB(X), 使得

B T = T B = I , I 是恒等算子 B T = T B = I , \quad\quad I是恒等算子 BT=TB=I,I是恒等算子

只需证充分性.事实上,若 T x = 0 , T x = 0 , Tx=0, x = I x = B T x = 0 , x = I x = B T x = 0 , x=Ix=BTx=0, T T T是一对一的.对任何 y ∈ X , y \in X , yX, T x = T B y = I y = y T x = T B y = I y = y Tx=TBy=Iy=y (令 B y = x ) , B y = x ) , By=x), T T T 的值域充满 X , X , X,

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值