机器视觉算法与应用--基于Tukey权重函数的最小二乘圆拟合

20 篇文章 ¥399.90 ¥499.90
本文介绍了在机器视觉领域中,如何利用Tukey权重函数进行迭代重加权最小二乘圆拟合。首先,讨论了轮廓点的提取,通过一维边缘提取方法和极坐标变换来定位圆的边缘。接着,详细阐述了基于Tukey权重函数的迭代重加权最小二乘算法,用于精确拟合轮廓点。参考链接提供了更多相关算法的细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


订阅说明:如果要订阅,先看链接内容 看链接内容 看链接内容:订阅先看此内容


一、轮廓点的提取

参考本系列中【卡尺-一维边缘提取】

  • 采用一维边缘提取的方法提取待拟合圆的边缘点;
  • 一维边缘提取针对的是直线,这里是圆弧,如何提取?
    • 方法1:将每一个卡尺内的图像进行变换,使之与图像的行/列 水平或垂直。
      • 问题:随着卡尺数量的增加,采用这种方法的变换,开销是否增加?待验证
    • 方法2:直接对待提取区域进行极坐标变换(参考:机器视觉算法与应用–圆环展开为矩形),使之成为矩形,之后再将其转换到原始图像中。

二、圆拟合-迭代重加权最小二乘算法

  • 具体推导如链接ÿ

Tukey最小二乘算法(Tukey's bisquare algorithm)是一种用于拟合数据的统计方法。它是一种鲁棒性的回归方法,可以有效地处理数据中存在的离群点或异常值。 Tukey最小二乘算法基于加权最小二乘法,但在计算误差项的权重时,引入了一个截断函数,使得离群点的权重更小。这个截断函数通常使用Tukey的双二次截断函数,它在一定范围内为1,在超过这个范围后线性地减小,直到为0。这样,离群点对拟合结果的影响被有效地减小。 Tukey最小二乘算法的核心思想是通过迭代进行加权最小二乘拟合。在每一次迭代中,根据上一轮拟合的残差,重新计算权重,并使用权重来求解回归模型的参数。迭代过程会持续进行,直到误差的变化小于一个事先设定的阈值,或者达到了最大迭代次数。 传统的最小二乘拟合相比,Tukey最小二乘算法具有更好的鲁棒性。它可以减小离群点对拟合结果的影响,使得在存在离群点的情况下得到更准确的拟合结果。然而,这种算法也存在一些问题。一方面,如果离群点的比例较高,可能会导致拟合结果的偏差。另一方面,截断函数的选择也需要根据具体问题进行权衡。 总体而言,Tukey最小二乘算法是一种灵活可靠的回归方法,适用于处理存在离群点的数据集。在实际应用中,根据具体问题的特点和数据的性质,可以选择不同的截断函数和参数设置,以获得更好的拟合效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

让让布吉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值