订阅说明:如果要订阅,先看链接内容 看链接内容 看链接内容:订阅先看此内容
一、轮廓点的提取
参考本系列中【卡尺-一维边缘提取】
- 采用一维边缘提取的方法提取待拟合圆的边缘点;
- 一维边缘提取针对的是直线,这里是圆弧,如何提取?
- 方法1:将每一个卡尺内的图像进行变换,使之与图像的行/列 水平或垂直。
- 问题:随着卡尺数量的增加,采用这种方法的变换,开销是否增加?待验证
- 方法2:直接对待提取区域进行极坐标变换(参考:机器视觉算法与应用–圆环展开为矩形),使之成为矩形,之后再将其转换到原始图像中。
- 方法1:将每一个卡尺内的图像进行变换,使之与图像的行/列 水平或垂直。
二、圆拟合-迭代重加权最小二乘算法
-
具体推导如链接ÿ
本文介绍了在机器视觉领域中,如何利用Tukey权重函数进行迭代重加权最小二乘圆拟合。首先,讨论了轮廓点的提取,通过一维边缘提取方法和极坐标变换来定位圆的边缘。接着,详细阐述了基于Tukey权重函数的迭代重加权最小二乘算法,用于精确拟合轮廓点。参考链接提供了更多相关算法的细节。
订阅专栏 解锁全文
5144

被折叠的 条评论
为什么被折叠?



