numpy中array和asarray用法的区别

numpy的array和asarray函数都能将结构数据转化为ndarray,但关键区别在于当数据源已经是ndarray时,array会创建副本,而asarray则不会。在示例中,当修改data1后,arr2保持不变,显示了array的复制行为;而arr3的改变反映了asarray并未复制数据,直接引用了原数组。
摘要由CSDN通过智能技术生成

array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会。
举例说明:

import numpy as np
 
#example 1:
data1=[[1,1,1],[1,1,1],[1,1,1]]
arr2=np.array(data1)
arr3=np.asarray(data1)
data1[1][1]=2
print 'data1:\n',data1
print 'arr2:\n',arr2
print 'arr3:\n',arr3

输出:


data1:
[[1, 1, 1], [1, 2, 1], [1, 1, 1]]
arr2:
[[1 1 1]
 [1 1 1]
 [1 1 1]]
arr3:
[[1 1 1]
 [1 1 1]
 [1 1 1]]

可见array和asarray没有区别,都对原数据进行了复制。

import numpy as np
 
#example 2:
arr1=np.ones((3,3))
arr2=np.array(arr1)
arr3=np.asarray(arr1)
arr1[1]=2
print 'arr1:\n',arr1
print 'arr2:\n',arr2
print 'arr3:\n',arr3

输出:


arr1:
[[ 1.  1.  1.]
 [ 2.  2.  2.]
 [ 1.  1.  1.]]
arr2:
[[ 1.  1.  1.]
 [ 1.  1.  1.]
 [ 1.  1.  1.]]
arr3:
[[ 1.  1.  1.]
 [ 2.  2.  2.]
 [ 1.  1.  1.]]

此时,两者的区别就表现出来。

转载来源:https://blog.csdn.net/Gobsd/article/details/56485177

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值