问题背景
在一次处理大规模数据时,发现内存和CPU占用率高,程序运行异常耗时,经Vs性能分析工具分析,发现某个函数中,一个unordered_map的find函数居然耗时占用了20%多,unordered_map中存储的数据大约100万个。
问题分析
unordered_map底层实现为hashtable,而一般情况下哈希表的查找为O(1),这明显和直觉相悖。STL之(哈希表)hashtable
- 猜想一
哈希表撞车,如果哈希函数导致哈希疯狂撞车,极端情况下哈希表将退化成链表,查找变为O(n),经查看hash函数如下,直观看上去这个哈希函数还挺复杂的,看起来并不会造成撞车。
template<>
struct std::hash<MyStruct>
{
size_t operator()(const MyStruct& st) const
{
return ((st.x << 16) + st.y);
}
};
- 猜想二
程序运行时内存和cpu都比较吃紧,由于次案例中哈希表是随机访问,可能是频繁的缓存不命中(cache miss)和缺页中断造成的[cache miss经典实例],stackoverflow上也有一篇关于hash table性能退化的帖子:
[c - Why does my program slow down on increasing the size of my hashtable - Stack Overflow]
问题验证
- 换更大内存的机器测试,不存在内存问题,find函数仍然占用很高的cpu时间。
- 将unordered_map 换成map ,find效率急剧提升,cpu占比变得很小。
- 对unordered_map 和map进行了一些基本测试。创建不同大小的map,并对每个元素执行一次find, 可以看出,hashtable中存储MyStruct时,性能表现得异常的离谱了。
unordered_map元素分布
在插入元素过程中,输出unordered_map的桶和桶内元素等信息,可以发现,容器一直在扩容,输出桶的增长过程
unordered_map桶增长函数如下:
_NODISCARD size_type _Desired_grow_bucket_count(const size_type _For_size) const noexcept {
const size_type _Old_buckets = bucket_count();
const size_type _Req_buckets = (_STD max) (_Min_buckets, _Min_load_factor_buckets(_For_size));
if (_Old_buckets >= _Req_buckets) {
// we already have enough buckets so there's no need to change the count
return _Old_buckets;
}
if (_Old_buckets < 512 && _Old_buckets * 8 >= _Req_buckets) {
// if we are changing the bucket count and have less than 512 buckets, use 8x more buckets
return _Old_buckets * 8;
}
// power of 2 invariant means this will result in at least 2*_Old_buckets after round up in _Forced_rehash
return _Req_buckets;
}
输出size不为0的桶
至此,哈希表的性能内鬼一目了然,我们的哈希函数居然离谱的把元素塞到了少数几个桶里面,整个哈希表退化成几条链表。根本原因是桶的数量是2^N ,而哈希函数前半部分base<<16, 在计算hash值定位桶的位置时,是将hash值对桶的数量取余(%),因此哈希函数前半部分完美的失效了,MyStruct的y值刚好变化范围较小,所以数据最终只落到了少数几个桶之中。
解决方案
总结
- 有时候直觉是不准确的
- 数据结构和算法有时候还是有点用处
附unordered_map测试代码:
#include <iostream>
#include <unordered_map>
#include <map>
#include <chrono>
struct MyStruct
{
int x;
int y;
};
template<>
struct std::hash<MyStruct>
{
size_t operator()(const MyStruct& st) const
{
return ((st.x << 16) + st.y);
}
};
bool operator ==(const MyStruct& st1, const MyStruct& st2)
{
return st1.x == st2.x && st1.y == st2.y;
}
bool operator < (const MyStruct& st1, const MyStruct& st2)
{
if (st1.x == st2.x) {
return st1.y < st2.y;
}
else {
return st1.x < st2.x;
}
}
int main()
{
std::unordered_map<MyStruct, int> testMap;
for (int i = 0; i < 10000; i++) {
MyStruct st{ i, i%4 };
testMap.insert(std::make_pair(st,i));
}
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < 10000; i++) {
MyStruct st{ i, i%4 };
auto iter = testMap.find(st);
}
auto end = std::chrono::high_resolution_clock::now();
auto cost = std::chrono::duration_cast<std::chrono::microseconds>(end - start)/1000.0;
std::cout << "find tiem cost: " << cost.count() << std::endl;
size_t size = testMap.bucket_count();
std::cout << "bucket count: " << size << std::endl;
for (int i = 0; i < size; i++) {
if (testMap.bucket_size(i) > 0) {
std::cout << "bucket " << i << " size: " << testMap.bucket_size(i) << std::endl;
}
}
return 1;
}