力学有限元的基石:虚功原理的推导

推导虚功方程的过程

弹性力学的平衡方程

在张量形式中,平衡方程为:

∇ ⋅ σ + b = 0 \nabla \cdot \sigma + b = 0 σ+b=0

用下标表示为:

∂ σ i j ∂ x j + b i = 0 \frac{\partial \sigma_{ij}}{\partial x_j} + b_i = 0 xjσij+bi=0

其中, σ i j \sigma_{ij} σij 是应力张量的分量, b i b_i bi 是体积力的分量。

平衡方程弱形式

我们乘以一个任意的虚位移场 v i v_i vi 并在整个体积 Ω \Omega Ω 上积分:

∫ Ω ( ∂ σ i j ∂ x j + b i ) v i   d Ω = 0 \int_\Omega \left( \frac{\partial \sigma_{ij}}{\partial x_j} + b_i \right) v_i \, d\Omega = 0 Ω(xjσij+bi)vidΩ=0

展开得到:

∫ Ω ∂ σ i j ∂ x j v i   d Ω + ∫ Ω b i v i   d Ω = 0 \int_\Omega \frac{\partial \sigma_{ij}}{\partial x_j} v_i \, d\Omega + \int_\Omega b_i v_i \, d\Omega = 0 ΩxjσijvidΩ+ΩbividΩ=0

对第一个积分项使用分部积分

对第一个积分项 ∫ Ω ∂ σ i j ∂ x j v i   d Ω \int_\Omega \frac{\partial \sigma_{ij}}{\partial x_j} v_i \, d\Omega ΩxjσijvidΩ 使用分部积分和微分乘法法则,将导数从应力张量 σ i j \sigma_{ij} σij 转移到虚位移场 v i v_i vi 上。

∫ Ω ( v i ∂ σ i j ∂ x j + σ i j ∂ v i ∂ x j ) d Ω = ∫ Ω ∂ ( σ i j v i ) ∂ x j   d Ω \int_\Omega \left( v_i \frac{\partial \sigma_{ij}}{\partial x_j} + \sigma_{ij} \frac{\partial v_i}{\partial x_j} \right) d\Omega = \int_\Omega \frac{\partial (\sigma_{ij} v_i)}{\partial x_j} \, d\Omega Ω(vixjσij+σijxjvi)dΩ=Ωxj(σijvi)dΩ

根据高斯散度定理有:

∫ Ω ∂ ( σ i j v i ) ∂ x j   d Ω = ∫ ∂ Ω σ i j v i n j   d S \int_\Omega \frac{\partial (\sigma_{ij} v_i)}{\partial x_j} \, d\Omega = \int_{\partial\Omega} \sigma_{ij} v_i n_j \, dS Ωxj(σijvi)dΩ=ΩσijvinjdS

这里, ∂ Ω \partial\Omega Ω 是体积 Ω \Omega Ω 的边界, n j n_j nj 是边界上的单位外法向量。因此,我们可以将第一个积分项写成:

∫ Ω v i ∂ σ i j ∂ x j   d Ω = ∫ ∂ Ω σ i j v i n j   d S − ∫ Ω σ i j ∂ v i ∂ x j   d Ω \int_\Omega v_i \frac{\partial \sigma_{ij}}{\partial x_j} \, d\Omega = \int_{\partial\Omega} \sigma_{ij} v_i n_j \, dS - \int_\Omega \sigma_{ij} \frac{\partial v_i}{\partial x_j} \, d\Omega ΩvixjσijdΩ=ΩσijvinjdSΩσijxjvidΩ

代入平衡方程弱形式

将上面分部积分得到的公式带入到平衡方程弱形式可得:

∫ Ω σ i j ∂ v i ∂ x j   d Ω = ∫ ∂ Ω σ i j v i n j   d S + ∫ Ω b i v i   d Ω \int_\Omega \sigma_{ij} \frac{\partial v_i}{\partial x_j} \, d\Omega = \int_{\partial\Omega} \sigma_{ij} v_i n_j \, dS + \int_\Omega b_i v_i \, d\Omega ΩσijxjvidΩ=ΩσijvinjdS+ΩbividΩ

根据边界条件:

  • 在边界 ∂ Ω t \partial\Omega_t Ωt 上有应力边界条件 σ i j n j = t i \sigma_{ij} n_j = t_i σijnj=ti
  • 在边界 ∂ Ω u \partial\Omega_u Ωu 上有位移边界条件 u i = u 0 i u_i = u_{0i} ui=u0i

最终虚功原理(虚位移原理)

结合体积力项和边界条件,得到弱形式:

∫ Ω σ i j ∂ v i ∂ x j   d Ω = ∫ ∂ Ω t t i v i   d S + ∫ Ω b i v i   d Ω \int_\Omega \sigma_{ij} \frac{\partial v_i}{\partial x_j} \, d\Omega = \int_{\partial\Omega_t} t_i v_i \, dS + \int_\Omega b_i v_i \, d\Omega ΩσijxjvidΩ=ΩttividS+ΩbividΩ

由应力张量的对称性

σ i j ∂ v i ∂ x j = 1 2 ( σ i j + σ j i ) ∂ v i ∂ x j = σ i j 1 2 ( ∂ v i ∂ x j + ∂ v j ∂ x i ) \sigma_{ij} \frac{\partial v_i}{\partial x_j} = \frac{1}{2}(\sigma_{ij} + \sigma_{ji})\frac{\partial v_i}{\partial x_j} = \sigma_{ij} \frac{1}{2}(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i}) σijxjvi=21(σij+σji)xjvi=σij21(xjvi+xivj)

最终,平衡方程的弱形式为:

∫ Ω σ i j ϵ i j   d Ω − ∫ Ω b i v i   d Ω − ∫ ∂ Ω t t i v i   d S = 0 \int_\Omega \sigma_{ij} \epsilon_{ij} \, d\Omega - \int_\Omega b_i v_i \, d\Omega - \int_{\partial\Omega_t} t_i v_i \, dS = 0 ΩσijϵijdΩΩbividΩΩttividS=0

如果将上面的 v i v_i vi写成位移的变分形式可以得到如下的虚功方程

∫ Ω σ : δ ϵ   d Ω = ∫ Ω b ⋅ δ u   d Ω + ∫ ∂ Ω t t ⋅ δ u   d S \int_\Omega \sigma : \delta \epsilon \, d\Omega = \int_\Omega b \cdot \delta u \, d\Omega +\int_{\partial\Omega_t} t \cdot \delta u \, dS Ωσ:δϵdΩ=ΩbδudΩ+ΩttδudS

总结

虚位移原理是平衡方程和力的边界条件的等效积分“弱”形式。虚位移原理的力学意义是:如果力系(包括内力和外力)是平衡的,则它们在虚位移和虚应变上所作之功的总和为零。反之,如果力系在虚位移及虚应变上所作之功的和等于零,则它们一定是满足平衡的,所以虚位移原理表述了力系平衡的必要而充分的条件。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值