逻辑学中的思维规律:同一律,不矛盾律,排中律,充足理由律

同一律是指在同一思维过程中,使用的概念和判断必须是同一的,也就是“A是A,A=A”.比如说:1+1=2,他们在表示实际意义的时候是同一个或同一种对象,不能是前一个“1”表示苹果,后一个“1”是梨,“2”是桔子,一个苹果“加”一个“梨”是两个桔子,这明显是不合逻辑的.

或者可以说是同一性判定问题。

 

不矛盾律是指同一思维过程中,对同一对象不能做出两种矛盾的判断,即不能既肯定它,又否定它,也就是“A不是非A,A不能即是B又不是B”.比如我不能不能说“a即是正数又是非正数”、“我们住的房子其实不是房子”.  

或者说一致性判定,或者说相容性

 

排中律是说这个命题是真和这个命题是假必居其一,也就是“A是B或者不是B”.比如说“这个矛是最锋利的,可刺穿任何盾,这个盾最坚固,任何矛都刺不破”就不符合排中律.

或者说完备性判定

同一律是要求我们在陈述过程中不能偷换概念,不矛盾律是要求不能有“公婆说法矛盾时,还坚持相信,公说公有理,婆说婆有理”的思想,排中律是说当我们可以否定一件事的时候就要承认这件事是错的.

 

充足理由律是指:“任何一件事如果是真实的或实在的,任何一个陈述如果是真实的,就必须有一个为什么这样而不那样的充足理由,虽然这些理由常常不能为我们所知道的.”对此不作解释

在MATLAB中对数据进行多项式内插并绘制曲线图是数学建模和数据可视化的重要环节。《MATLAB曲线拟合与数据内插技术详解》将为你提供深入的技术解析和实战指导。 参考资源链接:[MATLAB曲线拟合与数据内插技术详解](https://wenku.csdn.net/doc/7rinsov8av?spm=1055.2569.3001.10343) 首先,你需要确保你的数据是散点形式,且已经导入MATLAB中。然后,使用MATLAB的interp1函数进行一维多项式内插。interp1函数能够根据一组已知的散点数据,估算出这些数据点之间的未知值。 假设你有一组一维散点数据x和y,你可以通过以下代码进行二次多项式内插: ```matlab x = [1, 2, 3, 4, 5]; % 已知的散点数据 y = [1, 4, 9, 16, 25]; % 已知的散点数据对应的函数值 % 使用interp1进行二次多项式内插 xx = linspace(min(x), max(x), 100); % 生成一个更密集的x轴数据点数组 yy = interp1(x, y, xx, 'poly', 2); % 'poly', 2指定二次多项式内插 % 绘制原始散点和内插后的平滑曲线 plot(x, y, 'o', xx, yy); % 使用'o'标记原始数据点 title('多项式内插曲线图'); xlabel('X轴'); ylabel('Y轴'); ``` 上述代码首先定义了原始散点数据x和y,然后使用interp1函数进行二次多项式内插,其中'poly', 2指定了多项式的阶数。最后,使用plot函数绘制出了原始散点以及通过内插得到的平滑曲线。 通过以上步骤,你可以在MATLAB中对散点数据进行多项式内插,并绘制出平滑的曲线图。为了进一步深入理解内插技术和曲线拟合,建议详细阅读《MATLAB曲线拟合与数据内插技术详解》,该资源不仅涵盖了基础概念,还包括高级技巧和案例研究,帮助你在数值分析和工程计算中达到新的高度。 参考资源链接:[MATLAB曲线拟合与数据内插技术详解](https://wenku.csdn.net/doc/7rinsov8av?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值