计算机数学基础:斜率与截距、导数、权重的关系

这部分属于中学知识,是微积分、神经网络、色论、计算机图形学的基础,希望能帮助大家唤醒心底的记忆

斜率

斜率指的是,坐标系中y与x的比值,也就是tan(a),表示一条直线度倾斜度。斜率的作用是建立自变量与变量的联系,从而实现对变量的的推到运算。

斜率k的推导过程:
k = t a n ( α ) = △ y △ x = y 2 − y 1 x 2 − x 1 o r y 1 − y 2 x 1 − x 2 k= tan(\alpha) = \frac{\triangle y} {\triangle x} = \frac{y2-y1}{x2-x1 } or \frac{y1-y2}{x1-x2} k=tan(α)=xy=x2x1y2y1orx1x2y1y2
应用:
设坐标系中的直线l 过点p1(x1,y1)和 点p2(x2,y2),
1 先 求 出 斜 率 k : k = y 1 / x 1 ; 1 先求出斜率k:k = y1/x1 ; 1kk=y1/x1;
2 然 后 带 入 x 2 的 值 得 到 y 2 = k x 2 ; 2 然后带入x2的值得到 y2 = kx2; 2x2y2=kx2;

截距

直线的截距分为横截距和纵截距。横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。要求出横截距只需令Y=0,求出X,求纵截距就令X=0,求出Y。如y=x-1横截距为1,纵截距为-1。直线截距可正,可负,可为0。

斜率与导数的关系

导数,在某种角度来说就是间距趋于0时构成直线的两点的斜率。他的作用是,根据某个点的导数可以预测相邻点的位置、切线和法线。

神经网络中的权重

神经网络中的w权重 就相当于斜截式中的斜率k,补偿e相当于斜截式中的截距b

直线方程 直线的表达的几种形式

1 点斜式

适用于知道一个点的坐标和直线斜率,
公式:
k = y 1 − y 2 x 1 − x 2 k = \frac{y1 - y2}{x1-x2} k=x1x2y1y2
y 1 − y 2 = k ( x 1 − x 2 ) y1-y2 = k(x1-x2) y1y2=k(x1x2)
应用:
设点p1(1,2)和p2(2,y2), 求y2
带入公式: (2 - y2) = 2/1(1-2)
= y2 = 2 - (2* -1) = 4
y1,y2调过来也可以:
y2 - 2 = 2/1(2-1)
y2 = 2 + 2
y2 = 4

2 斜截式

已知斜率k和轴截距b,公式:
y = k x + b y= kx+b y=kx+b
应用:
设点斜率k = 2, 截距b = 0 ,x = 2,求y
带入公式: y = 2(2) + 0 = 5

3 两点式

已知两点(x1,y1), (x2,y2):
x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 \frac{x-x1}{x2-x1} = \frac{y-y1}{y2-y1} x2x1xx1=y2y1yy1
应用:
设点(0,0)和点(1,2)、(2,y2), 求y2
(0-1) /(2-1) =(0-2)/(y2 - 2)
-1/1 = -2/ (y2 -2)
-1 = -2/y2 + 1
y2 = -2(-1 - 1) = 4

4 截距式

已知某点x,y分别对应的截距a 和b
x a + y b = 1 \frac{x}{a}+\frac{y}{b}=1 ax+by=1
应用:
直线方程:y = 2x + 1,假设x的值为2,求y
首先求出x,y的解决,分别领方程的x,y为0
则x 的截距a == 0 = 2x +1 = -1/2 = -0.5
则y 的截距b == y = 2*0+1 = 1
带入截距式公式得到:
2/-0.5 + y/1 == 1 = -4 + y == y = 5
斜截式成立

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千年奇葩

从来没受过打赏,这玩意好吃吗?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值