这部分属于中学知识,是微积分、神经网络、色论、计算机图形学的基础,希望能帮助大家唤醒心底的记忆
斜率
斜率指的是,坐标系中y与x的比值,也就是tan(a),表示一条直线度倾斜度。斜率的作用是建立自变量与变量的联系,从而实现对变量的的推到运算。
斜率k的推导过程:
k
=
t
a
n
(
α
)
=
△
y
△
x
=
y
2
−
y
1
x
2
−
x
1
o
r
y
1
−
y
2
x
1
−
x
2
k= tan(\alpha) = \frac{\triangle y} {\triangle x} = \frac{y2-y1}{x2-x1 } or \frac{y1-y2}{x1-x2}
k=tan(α)=△x△y=x2−x1y2−y1orx1−x2y1−y2
应用:
设坐标系中的直线l 过点p1(x1,y1)和 点p2(x2,y2),
1
先
求
出
斜
率
k
:
k
=
y
1
/
x
1
;
1 先求出斜率k:k = y1/x1 ;
1先求出斜率k:k=y1/x1;
2
然
后
带
入
x
2
的
值
得
到
y
2
=
k
x
2
;
2 然后带入x2的值得到 y2 = kx2;
2然后带入x2的值得到y2=kx2;
截距
直线的截距分为横截距和纵截距。横截距是直线与X轴交点的横坐标,纵截距是直线与Y轴交点的纵坐标。要求出横截距只需令Y=0,求出X,求纵截距就令X=0,求出Y。如y=x-1横截距为1,纵截距为-1。直线截距可正,可负,可为0。
斜率与导数的关系
导数,在某种角度来说就是间距趋于0时构成直线的两点的斜率。他的作用是,根据某个点的导数可以预测相邻点的位置、切线和法线。
神经网络中的权重
神经网络中的w权重 就相当于斜截式中的斜率k,补偿e相当于斜截式中的截距b
直线方程 直线的表达的几种形式
1 点斜式
适用于知道一个点的坐标和直线斜率,
公式:
k
=
y
1
−
y
2
x
1
−
x
2
k = \frac{y1 - y2}{x1-x2}
k=x1−x2y1−y2
y
1
−
y
2
=
k
(
x
1
−
x
2
)
y1-y2 = k(x1-x2)
y1−y2=k(x1−x2)
应用:
设点p1(1,2)和p2(2,y2), 求y2
带入公式: (2 - y2) = 2/1(1-2)
= y2 = 2 - (2* -1) = 4
y1,y2调过来也可以:
y2 - 2 = 2/1(2-1)
y2 = 2 + 2
y2 = 4
2 斜截式
已知斜率k和轴截距b,公式:
y
=
k
x
+
b
y= kx+b
y=kx+b
应用:
设点斜率k = 2, 截距b = 0 ,x = 2,求y
带入公式: y = 2(2) + 0 = 5
3 两点式
已知两点(x1,y1), (x2,y2):
x
−
x
1
x
2
−
x
1
=
y
−
y
1
y
2
−
y
1
\frac{x-x1}{x2-x1} = \frac{y-y1}{y2-y1}
x2−x1x−x1=y2−y1y−y1
应用:
设点(0,0)和点(1,2)、(2,y2), 求y2
(0-1) /(2-1) =(0-2)/(y2 - 2)
-1/1 = -2/ (y2 -2)
-1 = -2/y2 + 1
y2 = -2(-1 - 1) = 4
4 截距式
已知某点x,y分别对应的截距a 和b
x
a
+
y
b
=
1
\frac{x}{a}+\frac{y}{b}=1
ax+by=1
应用:
直线方程:y = 2x + 1,假设x的值为2,求y
首先求出x,y的解决,分别领方程的x,y为0
则x 的截距a == 0 = 2x +1 = -1/2 = -0.5
则y 的截距b == y = 2*0+1 = 1
带入截距式公式得到:
2/-0.5 + y/1 == 1 = -4 + y == y = 5
斜截式成立