向量空间也就是所有向量都在的一个空间,如R^2就是代表一个二维平面,这个平面由无数二维实数向量组成。
向量空间必须对数乘和加法两种运算(对向量线性组合)是“封闭”的,封闭的意思是进行这两种运算时不会离开该向量空间,否则就不是向量空间。
**
子空间(subspace)
**
子空间根据字面意思就是向量空间中的一个空间
以R^2为例
R^2的子空间有哪些
1.R^2本身
2.所有经过原点的直线(line),用L表示
3.原点(0,0)(zero)用Z表示
如图所示,经过原点的直线就是其中一个子空间,其上的向量经过加减变换或是乘法变换都不会脱离这条直线,另一条不经过原点的直线不是子空间,用0乘以任意向量得到的都是0向量,但是0向量却不在这条直线上,因此它不是封闭的。 根据此我们也可以引出一个共识,空间必须包括零向量。
列空间(column space)
取出矩阵的每列并将其进行线性组合,得到的便是列空间
研究这些的根本目的其实是为了求解AX=b
举例设
那么AX=b一定有解吗?
答案是不确定,我们可以从两个角度来解释这个问题
几何方面:AX=b其实就是将A中的各个列向量根据x进行线性组合得到b,但是它无论怎样组合得到的都是R^4的一个子空间,一定有一些b是它表示不出来的。
方程方面:把方程写出来你可以发现有4个方程式,但是只有3个未知数,所以只有b取得合适,我们才可能得到解。
什么样的b才会有解呢
A中的各个列向量进行线性组合得到的列空间中的b都会使其有解。
零空间(NULL SPACE)
零空间是把x作为对象的,这里的零指的是AX=0,也就是b等于0的情况,零空间就是b=0是所有解的线性组合。
举例设
AX=0经过计算我们可以得到
很显然这是一条经过原点的直线,它满足加法数乘封闭吗?
设Aw=0,Ad=0,那么A(w+d)=0,因此w+d还是在原来的直线空间上
Aw=0,A14w=0,所以14w还是在原来的直线空间上
所以它满足加法数乘封闭。
顺便插一句,AX=b时,b不为0时,X能够成空间吗?显然不能,因为它肯定不包括0向量。
强调一点很重要的,也是我们一开始说的“空间”的概念
向量空间必须对数乘和加法两种运算(对向量线性组合)是“封闭”的,那首先这个空间必须得包含0向量。
列空间与零空间的对比
它们都是我们构建子空间的一种方式,只是出发角度不同。
列空间是告诉我们几条列向量,我们将其进行线性组合从而构建一个空间
零空间是给我们一个方程组我们需要求出其中满足条件的未知向量从而构建一个空间。