用torch.cuda.Event() 精确记录GPU的运行时间

用torch.cuda.Event() 精确记录GPU的运行时间:

start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
model.train(xxx)
end.record()
torch.cuda.synchronize()
elapsed_time = start.elapsed_time(end)

参考: torch.cuda.synchronize()

PyTorch是一个深度学习框架,它利用GPU来加速数学运算,尤其在处理大量数据和复杂模型时更为显著。`torch.tensor`和`torch.Tensor`都可以用来创建多维数组,而它们在GPU上的性能表现取决于多种因素,如数据类型、操作类型以及是否启用CUDA。 参考资源链接:[PyTorchtorch.tensor与torch.Tensor详解:差异与实战应用](https://wenku.csdn.net/doc/6401ad04cce7214c316edf9d?spm=1055.2569.3001.10343) 在创建多维数组时,如果你需要一个动态类型的张量,可以使用`torch.tensor`,它能够根据提供的数据自动推断出类型。例如: ```python import torch # 创建一个动态类型的二维张量 tensor_dynamic = torch.tensor([[1, 2], [3, 4]]) ``` 而`torch.Tensor`则用于创建一个固定类型的张量对象,它需要在创建时明确指定数据类型。例如: ```python # 创建一个32位浮点类型的二维张量 tensor_static = torch.FloatTensor([[1, 2], [3, 4]]) ``` 将这些张量迁移到GPU上,可以通过调用`.to('cuda')`方法实现,这样张量的存储位置会从CPU转移到GPU,从而利用GPU加速进行计算。例如: ```python # 将张量迁移到GPU tensor_dynamic_gpu = tensor_dynamic.to('cuda') tensor_static_gpu = tensor_static.to('cuda') ``` 进行数学运算时,例如矩阵乘法: ```python result_dynamic = tensor_dynamic_gpu @ tensor_dynamic_gpu.T result_static = tensor_static_gpu @ tensor_static_gpu.T ``` 在进行性能比较时,通常`torch.Tensor`会因为其内置的优化而略微优于`torch.tensor`,但差异不大。要注意的是,直接使用`torch.tensor`并指定`.to('cuda')`在某些情况下可以得到更好的性能,因为它避免了额外的数据类型转换开销。 最后,为了全面地评估性能,可以使用`torch.cuda.Event`来测量GPU上的时间消耗。此外,如果要对比`numpy`数组和PyTorch张量的性能,可以使用`torch.from_numpy()`来进行转换,并测量转换和计算的时间。 综上所述,创建多维数组时,`torch.tensor`和`torch.Tensor`各有优势,而在GPU上的性能提升则依赖于具体的操作和数据类型。建议在实际应用中结合具体需求和性能测试结果,选择最适合的方法。可以通过《PyTorchtorch.tensor与torch.Tensor详解:差异与实战应用》这本书来深入了解这两个组件的差异及它们在实际应用中的表现和最佳实践。 参考资源链接:[PyTorchtorch.tensor与torch.Tensor详解:差异与实战应用](https://wenku.csdn.net/doc/6401ad04cce7214c316edf9d?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值