汉诺塔递归算法理解及实现

汉诺塔问题描述: A、B、C 三个桌子,其中A桌子上放了几个大小不同的盘子,盘子的排列顺序为: 从上到下,依次从小到大递增;现要求把这些盘子从 A 桌子上移动到 C 桌子上,盘子移动时有一点要求:每次移动必须保证三张桌子上大盘子在下、小盘子在上;打印移动次序。

如 A 上一张 盘子时,移动顺序: A -> C

代码实现:

#include <iostream>

using namespace std;

/**
*汉诺塔问题: 将 A 上所有的盘子,移动到 C 上 ,A B C
*/
void moveAC(char A,char C)
{
    cout<<A<<"->"<<C<<endl;
}
void recursion_hano(int n,char A,char B,char C)
{
    //递归的终止条件
    if(n==1)
    {
        moveAC(A,C);
        return;
    }
    //先将 A 上上边n-1个盘子移动到 B上
    recursion_hano(n-1,A,C,B);  // 将 上 n-1 个圆盘移动到 B上
    moveAC(A,C);    	//将最大的圆盘移动到 C上
    recursion_hano(n-1,B,A,C);  //将B上的圆盘移动到C上
}
int main()
{
   
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值