深度学习500问——Chapter17:模型压缩及移动端部署(3)

文章目录


17.7 压缩和加速方法如何选择

(1)对于在线计算内存存储有限的应用场景或设备,可以选择参数共享和参数剪枝方法,特别是二值量化权值和激活、结构化剪枝。其他方法虽然能够有效的压缩模型中的权值参数,但无法减小计算中隐藏的内存大小(特征图)。

(2)如果在应用中用到的紧性模型需要利用预训练模型,那么参数剪枝、参数共享以及低秩分解将成为首要考虑的方法。相反地,若不需要借助预训练模型,则可以考虑紧性滤波设计及知识蒸馏方法。

(3)若需要一次性端对端训练得到压缩与加速后模型,可以利用基于紧性滤波设计的深度神经网络压缩与加速方法。

(4)一般情况下,参数剪枝,特别是非结构化剪枝,能大大压缩模型大小,且不容易丢失分类精度。对于需要稳定的模型分类的应用,非结构化剪枝成为首要选择。

(5)若采用的数据集较小时,可以考虑知识蒸馏方法。对于小样本的数据集,学生网络能够很好地迁移教师模型的知识,提高学生网络的判别性。

(6)主流的5个深度神经网络压缩与加速算法相互之间是正交的,可以结合不同技术进行进一步的压缩与加速。如:韩松等人[30]结合了参数剪枝和参数共享;温伟等人[64]以及AIvarez等人[85]结合了参数剪枝和低秩分解。此外对于特定的应用场景,如目标检测,可以对卷积层和全连接层使用不同的压缩与加速技术分别处理。

参考《深度神经网络压缩与加速综述》

17.8 改变网络结构设计为什么会实现模型压缩、加速

17.8.1 Group convolution

Group convolution最早出现在ALexNet中,是为了解决单卡显存不够,将网络部属到多卡上进行训练而提出。Group convolution可以减少单个卷积 1/g 的参数量。如何计算的呢?

假设:

  • 输入特征的维度为HWC_1
  • 卷积核的维度为H_1W_1C_1,共C_2
  • 输出特征的维度为H_1W_1C_2

传统卷积计算方式如下:

传统卷积运算量为:

A = H*W * h1 * w1 * c1 * c2

Group convolution是将输入特征对维度c1分为g份,每个group对应的channel数为 c1/g,特征维度 H*W*c1/g,每个group对应对卷积核对维度也相应发生改变为 h1*w1*c1/g,共 c2/g个;每个group相互独立运算,最后将结果叠加在一起。

Group convolution计算方式如下:

Group convolution运算量为:

B = H * W * h1 * w1 * c1/g * c2/g * g

Group卷积相对于传统卷积的运算量为:

\dfrac{B}{A} = \dfrac{ H * W * h1 * w1 * c1/g * c2/g * g}{H * W * h1 * w1 * c1 * c2} = \dfrac{1}{g}

由此可知:group卷积相对于传统卷积减少了 1/g 的参数量。

17.8.2 Depthwise separable convolution

Depthwise separable convolution 是由 depthwise conv 和 pointwise conv构成。

depthwise conv(DW)有效减少参数数量并提升运算速度。但是由于每个feature map 只被一个卷积核卷积,因此经过DW输出的feature map不能只包含输入特征图的全部信息,而且特征之间的信息不能进行交流,导致“信息流通不畅”。

pointwise conv(PW)实现通道特征信息交流,解决DW卷积导致“信息流通不畅”的问题。假设输入特征的维度为 H*W*c1;卷积核的维度为 h1*w1*c1,共c2个;输出特征的维度为 H1*W1*c2。

传统卷积计算方式如下:

传统卷积运算量为:

A = H * W * h1 * w1 * c1 * c2

DW卷积的计算方式如下:

DW卷积运算量为:

B_{DW} = H * W * h1 * w1 * 1 * c1

PW卷积的计算方式如下:

PW卷积运算量为:

B_{PW} = H_m * W_m * 1 * 1 * c_1 * c_2

Depthwise separable convolution运算量为:

B = B_{DW} + B_{PW}

Depthwise separable convolution相对于传统卷积的运算量为:

\dfrac{B}{A} = \dfrac{ H * W * h_1 * w_1 * 1 * c_1 + H_m * W_m * 1 * 1 * c_1 * c_2}{H * W * h1 * w1 * c_1 * c_2}\\= \dfrac{1}{c_2} + \dfrac{1}{h_1 * w_1}

由此可知,随着卷积通道数的增加,Depthwise separable convolution的运算量相对于传统卷积更少。

17.8.3 输入输出的channel相同时,MAC最小

卷积层对输入和输出特征通道数相等时MAC最小,此时模型速度最快。

假设feature map的大小为h*w,输入通道c_1,输出通道c_2

已知:FLOPs = B = h * w * c1 * c2=> c1 * c2 = \dfrac{B}{h * w}

根据均值不等式得到(c1-c2)^2>=0,等式成立的条件是c1=c2,也就是输入特征通道数和输出特征通道数相等时,在给定FLOPs前提下,MAC达到取值的下界。

17.8.4 减少组卷积的数量

过多的group操作会增大MAC,从而使模型速度变慢。

由以上公式可知,group卷积想比与传统的卷积可以降低计算量,提高模型的效率;如果在相同的FLOPs时,group卷积为了满足FLOPs会是使用更多的channels,可以提高模型的精度。但是随着channel数量的增加,也会增加MAC。

FLOPs:B = \dfrac{h * w * c1 * c2}{g}

MAC:MAC = h * w * (c1 + c2) + \dfrac{c1 * c2}{g}

由MAC、FLOPs可知:MAC = h * w * c1 + \dfrac{B*g}{c1} + \dfrac{B}{h * w}

当FLOPs固定(B不变)时,g越大,MAC越大。

17.8.5 减少网络碎片化程度(分支数量)

模型中分支数量越少,模型速度越快。

此结论主要是由实验结果所得。

以下为网络分支数和各分支包含的卷积数目对神经网络速度的影响。

实验中所使用到的基本网络结构,分别将它们重复10次,然后进行实验。实验结果如下:

由实验结果可知,随着网络分支数量多增加,神经网络的速度在降低。网络碎片化程度对GPU的影响效果明显,对CPU不明显,但是网络速度同样在降低。

17.8.7 减少元素级操作

元素级操作所带来对时间消耗也不能忽视。

ReLU、Tensor相加,Bisa相加的操作,分离卷积(depthwise convolution)都定义为元素级操作。

FLOPs大多数都是对于卷积计算而言的,因为元素级操作的FLOPs相对要低很多。但是过多的元素级操作也会带来时间成本。ShuffleNet作者对ShuffleNet v1和MobileNet v2对几种层操作的时间消耗做了分析,发现元素级操作对于网络速度的影响也很大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值