很多朋友在搭建自己的Agent客服或知识库系统时,都会遇到一个问题:
理论上很强,实际用起来效果不行。
有的问不到答案,有的答非所问,有的跑得慢还烧钱。
其实往往不是模型不够强,而是你背后的 RAG 知识库没搭好。
最近搞了一波知识库优化,今天这篇文章,我来简单梳理一下:
企业级 RAG 知识库的最佳实践和落地要点,特别适合已经在做智能体客服、业务问答、培训助手、员工助手等 AI 应用场景的朋友。
尤其当你遇到这些问题:
- 明明上传了很多资料,回答却找不到重点?
- 多轮对话总是断上下文、答不完整?
- 模型调用频繁,成本越来越高?
- 知识结构复杂,怎么切块、怎么嵌入很混乱?
那你就需要了解下真正实用的 RAG 系统是怎么构建的。

大家熟悉的像扣子 Coze 里的知识库,其实更多面向 C 端用户,适合做轻量 Bot、少量文档问答。
但在真实企业项目里,你可能面临的是:
订阅专栏 解锁全文
1596

被折叠的 条评论
为什么被折叠?



