基于Sentinel-3 OLCI数据:北大西洋叶绿素浓度提取与可视化全流程

在海洋生态研究中,叶绿素浓度是反映浮游植物分布的“生态晴雨表”——它不仅能揭示渔业资源分布规律,还能为赤潮监测、碳循环分析提供关键数据。本文基于Sentinel-3 OLCI卫星数据,通过Google Earth Engine(GEE)平台提取北大西洋叶绿素浓度,并结合完整代码解析处理逻辑,所有步骤严格遵循数据特性和官方规范。

一、Sentinel-3 OLCI数据核心特性

Sentinel-3是欧盟哥白尼计划的核心卫星系列,其搭载的OLCI(海洋和陆地颜色仪器) 专为监测地球表面颜色特征设计,根据GEE官方文档(COPERNICUS/S3/OLCI数据集),该数据具有以下优势:

核心特性 具体说明
光谱能力 21个波段覆盖400-1029nm(可见光至近红外),其中Oa04(490nm)、Oa06(560nm)、Oa08(665nm)对叶绿素敏感,可精准捕捉浮游植物信号
空间分辨率 300米,既能呈现区域尺度的分布格局(如洋流带来的浮游植物聚集带),又不会因数据量过大影响处理效率
时间分辨率 全球覆盖周期约2天,可及时追踪短期变化(如藻类爆发)
数据可用性 2016年10月至今的连续数据,支持长期趋势分析;在GEE平台可直接调用,无需本地下载

正是这些特性,让OLCI数据成为海洋叶绿素监测的理想选择——其多光谱能力可区分叶绿素与其他水体成分(如泥沙),300米分辨率能清晰呈现近岸与远海的差异。

二、完整代码解析

1. 研究区域定义

var northAtlantic = ee.Geometry.Rectangle([-80, 20, -20, 65]); // 北大西洋

作用:通过经纬度坐标(西经80°至西经20°,北纬20°至北纬65°)划定研究范围,覆盖北大西洋主要海域(包括北美东海岸、欧洲西海岸及北大西洋环流区域)。
优势:矩形区域便于快速筛选数据,减少无关区域的计算量。

2. Sentinel-3 OLCI数据加载

var dataset = ee.ImageCollection('COPERNICUS/S3/OLCI')
  .filterDate('2023-06-01', '2023-09-30') // 夏季时间段
  .filterBounds(northAtlantic);

参数说明

  • COPERNICUS/S3/OLCI:GEE官方数据集ID,严格对应Sentinel-3 OLCI数据;
  • filterDate:选择2023年夏季(6-9月)——此时北大西洋水温升高,浮游植物繁殖活跃,叶绿素信号强;<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

遥感AI实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值