在海洋生态研究中,叶绿素浓度是反映浮游植物分布的“生态晴雨表”——它不仅能揭示渔业资源分布规律,还能为赤潮监测、碳循环分析提供关键数据。本文基于Sentinel-3 OLCI卫星数据,通过Google Earth Engine(GEE)平台提取北大西洋叶绿素浓度,并结合完整代码解析处理逻辑,所有步骤严格遵循数据特性和官方规范。
一、Sentinel-3 OLCI数据核心特性
Sentinel-3是欧盟哥白尼计划的核心卫星系列,其搭载的OLCI(海洋和陆地颜色仪器) 专为监测地球表面颜色特征设计,根据GEE官方文档(COPERNICUS/S3/OLCI数据集),该数据具有以下优势:
| 核心特性 | 具体说明 |
|---|---|
| 光谱能力 | 21个波段覆盖400-1029nm(可见光至近红外),其中Oa04(490nm)、Oa06(560nm)、Oa08(665nm)对叶绿素敏感,可精准捕捉浮游植物信号 |
| 空间分辨率 | 300米,既能呈现区域尺度的分布格局(如洋流带来的浮游植物聚集带),又不会因数据量过大影响处理效率 |
| 时间分辨率 | 全球覆盖周期约2天,可及时追踪短期变化(如藻类爆发) |
| 数据可用性 | 2016年10月至今的连续数据,支持长期趋势分析;在GEE平台可直接调用,无需本地下载 |
正是这些特性,让OLCI数据成为海洋叶绿素监测的理想选择——其多光谱能力可区分叶绿素与其他水体成分(如泥沙),300米分辨率能清晰呈现近岸与远海的差异。
二、完整代码解析
1. 研究区域定义
var northAtlantic = ee.Geometry.Rectangle([-80, 20, -20, 65]); // 北大西洋
作用:通过经纬度坐标(西经80°至西经20°,北纬20°至北纬65°)划定研究范围,覆盖北大西洋主要海域(包括北美东海岸、欧洲西海岸及北大西洋环流区域)。
优势:矩形区域便于快速筛选数据,减少无关区域的计算量。
2. Sentinel-3 OLCI数据加载
var dataset = ee.ImageCollection('COPERNICUS/S3/OLCI')
.filterDate('2023-06-01', '2023-09-30') // 夏季时间段
.filterBounds(northAtlantic);
参数说明:
COPERNICUS/S3/OLCI:GEE官方数据集ID,严格对应Sentinel-3 OLCI数据;filterDate:选择2023年夏季(6-9月)——此时北大西洋水温升高,浮游植物繁殖活跃,叶绿素信号强;<

最低0.47元/天 解锁文章
1225

被折叠的 条评论
为什么被折叠?



