【论文阅读】Secure Partial Aggregation: Making Federated Learning More Robust for Industry 4.0 Application

个人阅读笔记,如有错误欢迎指出

期刊:IEEE TII 2022  Secure Partial Aggregation: Making Federated Learning More Robust for Industry 4.0 Applications | IEEE Journals & Magazine | IEEE Xplore

问题:

        联邦学习的训练机制使得其容易受到后门攻击及成员推断攻击

        当前关于联邦学习中的两种安全防御机制是割裂的(设计健壮的聚合规则,基于密码学的安全聚合协议)

创新:

        限制客户端的上传比例

        利用加密使服务器无法推断出私人信息,并提供安全的恶意客户端检测(同时防御客户端后门攻击和服务器推断攻击)

方法:

        设置参数d来控制每个客户端模型更新的上传比例---->使恶意客户端难以实现模型替换攻击(降低毒性)

        通过分布式同态加密---->使模型更新对服务器不可见(服务器无法获得明文,无法推断单独的模型更新)

        限制上传比例的聚合算法

        客户端在向服务器上传其本地更新之前,要执行以\Delta_i^t和比例d为参数的RandomUpdateSelection(·)操作

        其中,\Delta_i^t是模型参数的多层结构,将其faltten并concat成有l个部分的一维向量V_i=(v_i[1],v_i[2],...,v_i[l])。然后每个客户端用0随机填充l*(1-d)个部分,最终得到的模型更新为V_i'

        服务器收到各个“部分的”客户端模型,需要将其构建聚合为完整模型,即对V'_i​中的每一个部分的非零向量做平均,最终构成完整的聚合参数V_{agg}^t

实验:

        与FedAvg算法相比,本文提出的方法在精度上没有明显差异

        在不同参数d下模型收敛需要的轮数

        防御如模型替换攻击的single-shot攻击

        防御持续攻击

        防御DBA攻击

        在non-iid设置下,与完整更新相比,上传部分参数的更新方不会暴露数据分布信息

读后感:

        优点:

                可以防御放大梯度的攻击,因为部分聚合策略让恶意客户端无法一次性执行后门攻击

                可以防御推理攻击,因为客户端每次只上传部分参数,公开信息有限

                可以和安全聚合策略兼容

        局限性:

                无法防御如符号反转攻击等无目标攻击

                可以在一定程度上减轻恶意攻击的影响,但是不能完全消除恶意攻击,并且无法检测定位哪个客户端是恶意模型

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值