数据驱动的仿真

本文探讨了数据驱动仿真在动态状态估算、在线模型调整和动态事件重构中的应用,强调了实时数据如何提升仿真精度并推动实时决策。OpenCAE开源项目为缺乏仿真技术的企业提供了机会。同时,文章也指出了传统仿真技术的局限性及动态数据驱动在计算物理学中的潜力和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据驱动的仿真

数字孪生体之所以与传统仿真不同,是因为它产生之初就是数据驱动的。早在1979年,通杰尔·奥伦(Tuncer Oren)和伯纳德·齐格勒(Bernard Zeigler)在《高级仿真方法的概念》一文中就指出,数据在建模和仿真中非常重要,但直到最近十年,数据驱动才开始成为仿真的一种选择。在数字孪生体中,仿真当然是数据驱动的。

通杰尔·奥伦在2001年《数据对仿真的影响:从早期实践到联邦和面向代理的仿真》一文中提出:“在建模时,需要数据来做参数匹配和参数校正。无论如何,我们需要数据来验证模型和试验环境。”在同一篇文章中,通杰尔·奥伦还提出仿真分为独立的仿真和在线仿真,后者与一个实时系统同步更新。

一言以蔽之,传统的仿真是离线方式,想要实现动态孪生等级,如果仅仅采用静态或历史数据来做仿真,其价值会大打折扣。乔治亚州立大学的Hu Xiaolin在《建模与仿真概念和方法》一书中撰写了“动态数据驱动仿真:连接实时数据到仿真”,采用连续蒙特卡罗方法(Sequential Monte Carlo Methods)设计了动态数据驱动仿真工程方法,并通过山火监测做了验证。
Hu Xiaolin为此得出结论——因为有了实时数据的参与,仿真呈现出了与传统方法不同的范式,它使实时决策成为可能。动态数据驱动仿真改变了传统仿真的不少技术应用。

(1)动态状态估算。

在动态数据驱动仿真中,利用观察数据对动态改变的系统状态进行估算是基本功能。这种功能促使仿真可以从更接近真实状态开始,从而可以获得更准确的仿真效果。

(2)在线模型调整。

除了对系统状态进行估算外,动态数据驱动仿真还可以动态调整模型参数,这对于未知问题的估算更加有效。

(3)动态事件重构。

对于动态数据驱动仿真系统来说,由于获得了实时数据,可以对关注事件实施动态观察。从列举的山火案例中可以看出,动态事件重构对于预测山火扩散态势具有较好的效果。

作为数字孪生体研究的主力军之一,美国空军研究实验室的科学家也对动态数据驱动应用系统做了详细的研究,并于2018年出版了一本名为《动态数据驱动应用系统手册》(Handbook of Dynamic Data Driven Applications Systems)的书,该书由美国空军研究实验室的埃里克·布拉舍(Erik Blasch)、亚历克斯·阿韦德(Alex Aved)和麻省理工学院的萨伊·拉韦拉(Sai Ravela)等主编,第一章即为“动态数据驱动应用系统简介”。动态数据驱动应用系统如图在这里插入图片描述
埃里克·布拉舍等人指出,动态数据驱动应用系统范式早在1998年就被提出来了,当时是美国国家科学基金会Frederica Darema提出了“下一代软件项目”,从2000年开始,美国国家科学基金会持续对该项目提供了资助。目前动态数据驱动应用系统协会每年都会举办相关的主题大会,召集全球顶级的数据科学专家参与,讨论动态数据驱动应用系统的最新进展。
通过动态数据驱动应用系统模型,模型和数据有机地结合起来了,可以有效分析和预测物理世界的各种物体。采用传感器再配置闭环(Sensor Reconfiguration Loop),实现测量数据的实时更新,因此才可以称整个系统是数据驱动的。动态数据驱动应用系统的应用领域见在这里插入图片描述
考虑到动态数据驱动应用系统在数据科学、自动化和智能设计三大未来领域有潜在突破的可能,美国空军研究实验室关注它也就不足为奇,主要在无人驾驶车辆上加快应用该技术。翼络数字公司数字孪生体技术研究院(DTTI,Digital Twin Technology Institute)目前正围绕动态数据驱动应用系统协会的最新进展,在一些工程项目上开始采用相关成果。

针对以上提及的动态数据驱动仿真或应用系统,数字孪生体联盟维护了一个开源项目OpenCAE,该项目基于业内已有的各种开源项目,实现增量集成的计算机辅助工程开源软件方法。

在全球产业格局发生较大变化的背景下,数字孪生体为企业提供了改变市场地位的机会。除了已经在仿真领域具有地位的传统大企业,进入数字孪生体领域的企业很多都缺乏仿真技术生态,在推进数字孪生化的时候难免受限,OpenCAE开源数字孪生体项目正好提供了这样的机会。通过研究数据驱动的设计参数智能优化理论,研制仿真计算规模自适应的异构可扩展算法,从而设计计算机辅助工程软件中的关键核心模块,为数据驱动的仿真能力提供了可能。

仿真通常涉及计算物理学,这需要非常专业的科学家设计算法,通过算法来对物理现象进行模拟,这种模拟的代价通常比较高,不仅仿真工具成本较高,而且需要专业人员来操作和使用,毕竟如果不了解物理原理是难以在具体的工程需求下使用该工具并给出解释的。

### 数据驱动仿真平台的相关技术应用 #### 技术概述 数据驱动仿真平台依赖于实时数据流,这些数据可以来自传感器、网络接口或其他数据源。该类平台的核心在于能够处理并解析大量动态变化的数据,并将其转化为可视化的交互界面或控制指令[^1]。 #### 应用场景 此类平台广泛应用于多个行业: - **军事与航空航天** 平台用于模拟飞行器的操作环境以及武器系统的性能测试,提供逼真的训练体验战术演练支持。 - **医疗健康** 构建人体器官的生物力学模型或是手术过程的教学工具,帮助医生更好地理解复杂的生理结构及其运作机制[^2]. - **智能制造** 结合物联网(IoT),实现生产设备的状态监测及维护预警;同时优化生产流程管理,提高效率降低能耗[^3]. - **教育科研** 提供虚拟实验室环境给学生学习物理实验、化学反应等难以实际操作的内容. #### 关于卢頔的研究或项目 虽然具体提及卢頔个人的工作细节有限,但从现有资料推测,在涉及数据驱动仿真的研究方向上,可能关注以下几个方面: - 开发高效的算法以增强对大规模时空序列数据分析的能力. - 探索如何更精准地映射现实世界的现象到数字孪生体中去. - 设计友好的用户界面使得非技术人员也能轻松理解使用这类高级别的技术成果. ```python # Python代码示例:简单的数据驱动图形展示程序 import matplotlib.pyplot as plt from random import randint def plot_data(data_points): """绘制随机生成的数据点""" fig, ax = plt.subplots() ax.plot([i for i in range(len(data_points))], data_points) plt.show() if __name__ == "__main__": sample_data = [randint(0, 100) for _ in range(50)] plot_data(sample_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr Robot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值