labelme指定输出文件夹 批量json转png --图像分割数据集准备

用labelme标注之后,导出的是json文件,我们可用labelme自带的json_to_datase.py来把json转为png图片

假如我的json文件名为event_172.json
在这里插入图片描述
转成的是一个文件夹
在这里插入图片描述
文件夹有如下文件,其中label.png是我想要的mask图片
在这里插入图片描述
现在想批量把json文件夹下所有的json文件都统一转为对应名称的png(比如172.json转为172.png),并保存到我指定的输出文件夹下

步骤如下:

找到 labelme自带的json_to_dataset.py
可用conda env list命令找到当前labelme环境所在的文件夹
在环境文件夹下到
在这里插入图片描述
把json_to_dataset.py的代码拷到其他py文件里(最好不要修改原文件),并修改如下
因为这里我只要mask的图片,所以只输出一个png

ps: 代码基本没修改,只加了一个file的循环,注释掉了不需要的输出

运行结果:在mask文件夹下输出了对应名称的png图片

#import argparse
import base64
import json
import os
import os.path as osp

#import imgviz
#import PIL.Image

#from labelme.logger import logger
from labelme import utils


def main():
    # logger.warning(
    #     "This script is aimed to demonstrate how to convert the "
    #     "JSON file to a single image dataset."
    # )
    # logger.warning(
    #     "It won't handle multiple JSON files to generate a "
    #     "real-use dataset."
    # )
    json_folder = "./json"
    out_dir = "./mask"
    if not osp.exists(out_dir):
        os.mkdir(out_dir)

    json_list = os.listdir(json_folder)
    for i in range(0, len(json_list)):
        json_file = os.path.join(json_folder, json_list[i])
        out_name = json_list[i][:-5]
        data = json.load(open(json_file))
        imageData = data.get("imageData")

        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
            with open(imagePath, "rb") as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode("utf-8")
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {"_background_": 0}
        for shape in sorted(data["shapes"], key=lambda x: x["label"]):
            label_name = shape["label"]
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
        lbl, _ = utils.shapes_to_label(
            img.shape, data["shapes"], label_name_to_value
        )

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name

        # lbl_viz = imgviz.label2rgb(
        #     label=lbl, img=imgviz.asgray(img), label_names=label_names, loc="rb"
        # )

        #PIL.Image.fromarray(img).save(osp.join(out_dir, "img.png"))
        utils.lblsave(osp.join(out_dir, out_name+".png"), lbl)
        #PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))


        #logger.info("Saved to: {}".format(out_dir))


if __name__ == "__main__":
    main()
### 如何将异常检测数据集JSON文件换为PNG图像 要实现从JSON文件到PNG图像的换,可以借鉴COCO数据集中语义分割标注的处理方式。以下是具体的方法: #### 方法概述 通过`labelme`工具库,可以从JSON文件生成对应的PNG掩码图像。此工具支持多种类型的标注,并能将其化为适合机器学习模型训练的格式。 #### 实现步骤说明 以下代码展示了如何批量读取指定路径下的JSON文件并将其换为PNG图像[^2]: ```python import os # 定义存放JSON文件的文件夹路径 json_folder = r"C:\path\to\your\json_files" # 获取文件夹内的所有文件名列表 file_name_list = os.listdir(json_folder) # 激活LabelMe虚拟环境(如果已激活可跳过) os.system("activate labelme") for file_index in range(len(file_name_list)): # 过滤出仅有的JSON文件 if os.path.splitext(file_name_list[file_index])[1] == ".json": json_file_path = os.path.join(json_folder, file_name_list[file_index]) # 调用命令行工具完成换 os.system(f"labelme_json_to_dataset {json_file_path}") ``` 上述脚本会遍历指定文件夹中的每一个`.json`文件,并执行`labelme_json_to_dataset`命令来创建相应的数据集文件夹以及其中的PNG图像。 #### 处理后的PNG图像特点 需要注意的是,默认生成的`label.png`可能是全黑的画面,这是因为背景区域被赋予了零值像素,而实际的目标物体通常具有较小数值(如1、2等)。为了更直观地观察结果,可以通过调整颜色映射表来进行增强显示[^3]: ```python from PIL import Image # 打开原始标签图片 mask_image = Image.open('label.png').convert('L') # 设置自定义调色盘 custom_palette = [ 0, 0, 0, # 黑色代表背景 255, 0, 0, # 红色表示第一个类别 0, 255, 0, # 绿色表示第二个类别 0, 0, 255 # 蓝色表示第三个类别 ] mask_image.putpalette(custom_palette) mask_image.show() ``` 这样就可以清晰看到不同类别的分布情况了。 #### 数据可视化的重要性 在整个过程中,无论是初始阶段的数据准备还是最终成果展示环节,都离不开有效的数据可视化手段。这不仅有助于理解复杂的数据结构,还能促进算法性能评估等工作顺利开展[^4]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值