labelme指定输出文件夹 批量json转png --图像分割数据集准备

用labelme标注之后,导出的是json文件,我们可用labelme自带的json_to_datase.py来把json转为png图片

假如我的json文件名为event_172.json
在这里插入图片描述
转成的是一个文件夹
在这里插入图片描述
文件夹有如下文件,其中label.png是我想要的mask图片
在这里插入图片描述
现在想批量把json文件夹下所有的json文件都统一转为对应名称的png(比如172.json转为172.png),并保存到我指定的输出文件夹下

步骤如下:

找到 labelme自带的json_to_dataset.py
可用conda env list命令找到当前labelme环境所在的文件夹
在环境文件夹下到
在这里插入图片描述
把json_to_dataset.py的代码拷到其他py文件里(最好不要修改原文件),并修改如下
因为这里我只要mask的图片,所以只输出一个png

ps: 代码基本没修改,只加了一个file的循环,注释掉了不需要的输出

运行结果:在mask文件夹下输出了对应名称的png图片

#import argparse
import base64
import json
import os
import os.path as osp

#import imgviz
#import PIL.Image

#from labelme.logger import logger
from labelme import utils


def main():
    # logger.warning(
    #     "This script is aimed to demonstrate how to convert the "
    #     "JSON file to a single image dataset."
    # )
    # logger.warning(
    #     "It won't handle multiple JSON files to generate a "
    #     "real-use dataset."
    # )
    json_folder = "./json"
    out_dir = "./mask"
    if not osp.exists(out_dir):
        os.mkdir(out_dir)

    json_list = os.listdir(json_folder)
    for i in range(0, len(json_list)):
        json_file = os.path.join(json_folder, json_list[i])
        out_name = json_list[i][:-5]
        data = json.load(open(json_file))
        imageData = data.get("imageData")

        if not imageData:
            imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
            with open(imagePath, "rb") as f:
                imageData = f.read()
                imageData = base64.b64encode(imageData).decode("utf-8")
        img = utils.img_b64_to_arr(imageData)

        label_name_to_value = {"_background_": 0}
        for shape in sorted(data["shapes"], key=lambda x: x["label"]):
            label_name = shape["label"]
            if label_name in label_name_to_value:
                label_value = label_name_to_value[label_name]
            else:
                label_value = len(label_name_to_value)
                label_name_to_value[label_name] = label_value
        lbl, _ = utils.shapes_to_label(
            img.shape, data["shapes"], label_name_to_value
        )

        label_names = [None] * (max(label_name_to_value.values()) + 1)
        for name, value in label_name_to_value.items():
            label_names[value] = name

        # lbl_viz = imgviz.label2rgb(
        #     label=lbl, img=imgviz.asgray(img), label_names=label_names, loc="rb"
        # )

        #PIL.Image.fromarray(img).save(osp.join(out_dir, "img.png"))
        utils.lblsave(osp.join(out_dir, out_name+".png"), lbl)
        #PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))


        #logger.info("Saved to: {}".format(out_dir))


if __name__ == "__main__":
    main()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值