leetcode 279. Perfect Squares(完美平方数)

Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.

Example 1:

Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:

Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.

给出一个数字,问该数字最少由几个平方数的和构成
比如13, 最少由42和92这两个平方数构成,所以返回2

思路:
方法一:DP
首先知道自己就是平方的数返回1,因为它们由它们自己构成

定义dp数组,dp[i] = i 由几个平方数构成
比如dp[12] = 3, dp[13] = 2

已知dp[i * i] = 1,那么dp[i * i + 1] = dp[i * i] + 12 或者dp[i * i + 1]中较小的(有可能 dp[i * i + 1]前面已经计算过)
而后再算dp[i * i + 2] …一直计算到i * i + j <= n
然后i 向前走,从下一个平方数的dp[i * i] =1开始
该方法简化了一些运算量,但是不好理解

 //17ms
    public int numSquares(int n) {
        if (n == 0) {
            return 0;
        }
        
        int[] dp = new int[n+1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[0] = 0;
        
        //square itself is 1..
        for (int i = 1; i * i <= n; i++) {
            dp[i * i] = 1;
        }
        
        for (int i = 1; i * i <= n; i++) {
            int k = i * i;
            //j从k开始是因为直接从2*i^2处简化,dp[2*i^2]=dp[i^2]+1=2,
            //从这里开始往后走可以避免一部分计算量
            //相当于划成了每个i*i的小区间,每次从i*i开始更新
            for (int j = k; j + k <= n; j++){
                dp[j + k] = Math.min(dp[j + k], dp[j] + 1);
            }
        }
        
        return dp[n];
    }

DP2

//25ms
    public int numSquares(int n) {
        int[] dp = new int[n + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        
        dp[0] = 0;
        
        for(int i = 0; i <= n; i++) {
            for(int j = 1; i + j*j <= n; j++) {
                dp[i + j*j] = Math.min(dp[i] + 1, dp[i + j*j]);
            }
        }
        
        return dp[n];
    }

方法二:数学方法(不含证明)
四平方和定理,任何正整数均可表示为4个数以内的平方和。即返回结果只可能是1, 2, 3, 4中的一个。
如果一个数含有因子4,可以把4全部约掉,不影响结果。

下面用排除法:
如果一个数除以8余7,那么这个数为4个数的平方和。
把一个数拆成两个平方数之和,拆成功了返回1或2。其中一个数为0时返回1,都大于0返回2。
剩下的情况返回3。

//1ms
    public int numSquares(int n) {
        while(n % 4 == 0) {
            n /= 4;
        }
        
        if(n % 8 == 7) {
            return 4;
        }
        
        for(int a = 0; a*a <= n; a++) {
            int b = (int)Math.sqrt(n - a*a);
            if(a*a + b*b == n) {
                if(a > 0 && b > 0) {
                    return 2;
                } else if(a > 0 || b > 0) {
                    return 1;
                }
            }
        }
        
        return 3;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝羽飞鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值