Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
给出一个数字,问该数字最少由几个平方数的和构成
比如13, 最少由42和92这两个平方数构成,所以返回2
思路:
方法一:DP
首先知道自己就是平方的数返回1,因为它们由它们自己构成
定义dp数组,dp[i] = i 由几个平方数构成
比如dp[12] = 3, dp[13] = 2
已知dp[i * i] = 1,那么dp[i * i + 1] = dp[i * i] + 12 或者dp[i * i + 1]中较小的(有可能 dp[i * i + 1]前面已经计算过)
而后再算dp[i * i + 2] …一直计算到i * i + j <= n
然后i 向前走,从下一个平方数的dp[i * i] =1开始
该方法简化了一些运算量,但是不好理解
//17ms
public int numSquares(int n) {
if (n == 0) {
return 0;
}
int[] dp = new int[n+1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
//square itself is 1..
for (int i = 1; i * i <= n; i++) {
dp[i * i] = 1;
}
for (int i = 1; i * i <= n; i++) {
int k = i * i;
//j从k开始是因为直接从2*i^2处简化,dp[2*i^2]=dp[i^2]+1=2,
//从这里开始往后走可以避免一部分计算量
//相当于划成了每个i*i的小区间,每次从i*i开始更新
for (int j = k; j + k <= n; j++){
dp[j + k] = Math.min(dp[j + k], dp[j] + 1);
}
}
return dp[n];
}
DP2
//25ms
public int numSquares(int n) {
int[] dp = new int[n + 1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int i = 0; i <= n; i++) {
for(int j = 1; i + j*j <= n; j++) {
dp[i + j*j] = Math.min(dp[i] + 1, dp[i + j*j]);
}
}
return dp[n];
}
方法二:数学方法(不含证明)
四平方和定理,任何正整数均可表示为4个数以内的平方和。即返回结果只可能是1, 2, 3, 4中的一个。
如果一个数含有因子4,可以把4全部约掉,不影响结果。
下面用排除法:
如果一个数除以8余7,那么这个数为4个数的平方和。
把一个数拆成两个平方数之和,拆成功了返回1或2。其中一个数为0时返回1,都大于0返回2。
剩下的情况返回3。
//1ms
public int numSquares(int n) {
while(n % 4 == 0) {
n /= 4;
}
if(n % 8 == 7) {
return 4;
}
for(int a = 0; a*a <= n; a++) {
int b = (int)Math.sqrt(n - a*a);
if(a*a + b*b == n) {
if(a > 0 && b > 0) {
return 2;
} else if(a > 0 || b > 0) {
return 1;
}
}
}
return 3;
}