3D姿态估计的评价指标MPJPE及其变种

MPJPE是“Mean Per Joint Position Error”,即“平均(每)关节位置误差”。

MPJPE常常用于3D Human Pose Estimation算法的评价指标,这个指标越小则可认为这个3D人体姿态估计算法越好

看一下公式就能一目了然:

截图来自论文:http://vision.imar.ro/human3.6m/pami-h36m.pdf

用白话描述就是:计算预测关节点与对应GT关节点的L2距离的平均值


MPJPE通常被称为Protocol #1,常用的还有Protocol #2。此外还有不太常用的Protocol #3。

Protocol #2是P-MPJPE,先经过旋转、对齐等变换再进行MPJPE;而Protocol #3是N-MPJPE,先进行规模对齐再进行MPJPE。

咱们来看一段描述:

Protocol 1 is the mean per-joint position error (MPJPE) in millimeters which is the mean Euclidean distance between predicted joint positions and ground-truth joint positions and follows [29, 53, 59, 34, 41]. Protocol 2 reports the error after alignment with the ground truth in translation, rotation, and scale (P-MPJPE) [34, 50, 10, 40, 56, 16]. Protocol 3 aligns predicted poses with the ground-truth only in scale (N-MPJPE) following [45] for semi-supervised experiments.

描述来自论文:https://arxiv.org/pdf/1811.11742.pdf 

MPJPE(Mean Per Joint Position Error)是一种常用于评估3D人体姿态估计算法的指标。它用于衡量估计出的3D关节点位置与真实标注之间的平均位置误差。这个指标的值越小,表示估计算法的准确性越高,说明该算法对人体姿态的估计效果越好。 值得注意的是,这个指标的计算方法可能因算法而异。在具体的论文中,可能会提供详细的计算公式和数据集说明,以便更好地理解和比较不同算法的表现。所以,如果想要更深入地了解MPJPE指标的计算细节,可以参考原始论文和相关的研究工作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [3D姿态估计评价指标MPJPE及其变种](https://blog.csdn.net/leviopku/article/details/118108885)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [基于 AR 图像识别的算法研究与应用(python实现)](https://download.csdn.net/download/weixin_42380711/88245138)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木盏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值