我们将属性称为特征,针对各种特定的学习任务,特征的重要程度不同,对当前任务有用的属性称为“相关特征”,没什么用的属性称为“无关特征”,从给定的特征集合中选择出相关特征子集的过程,就是特征选择。
特征选择:过滤式选择,包裹式选择,嵌入式选择。
其中嵌入式选择:是将特征选择过程与学习器训练过程融为一体。即在训练的同事自动进行了特征选择。
对于过拟合问题,我们经常引入正则化项,L1,L2正则化都有助于降低过拟合风险。(L0:向量内所有非零元素的个数之和。)
<
我们将属性称为特征,针对各种特定的学习任务,特征的重要程度不同,对当前任务有用的属性称为“相关特征”,没什么用的属性称为“无关特征”,从给定的特征集合中选择出相关特征子集的过程,就是特征选择。
特征选择:过滤式选择,包裹式选择,嵌入式选择。
其中嵌入式选择:是将特征选择过程与学习器训练过程融为一体。即在训练的同事自动进行了特征选择。
对于过拟合问题,我们经常引入正则化项,L1,L2正则化都有助于降低过拟合风险。(L0:向量内所有非零元素的个数之和。)
<