特征选择L1正则化与过拟合L2正则化。

特征选择是找出相关特征子集的过程,包括过滤式、包裹式和嵌入式选择。嵌入式选择如L1和L2正则化能防止过拟合。L1正则化倾向于产生稀疏解,适合特征选择,而L2正则化则不会使参数稀疏,其损失函数可导,优化更简单。
摘要由CSDN通过智能技术生成

我们将属性称为特征,针对各种特定的学习任务,特征的重要程度不同,对当前任务有用的属性称为“相关特征”,没什么用的属性称为“无关特征”,从给定的特征集合中选择出相关特征子集的过程,就是特征选择。

特征选择:过滤式选择,包裹式选择,嵌入式选择。

其中嵌入式选择:是将特征选择过程与学习器训练过程融为一体。即在训练的同事自动进行了特征选择。


对于过拟合问题,我们经常引入正则化项,L1,L2正则化都有助于降低过拟合风险。(L0:向量内所有非零元素的个数之和。)

<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值