面试官提问:Transformer可以分为哪些类别?
参考回答:
根据不同的任务和优化目标,Transformer模型可以大致分为以下几类:
1. 标准Transformer
最初提出的标准Transformer是用于自然语言处理的序列到序列(Seq2Seq)架构,它包含两个部分:编码器-解码器。编码器将输入序列映射到隐藏表示,解码器基于这些表示生成目标序列。这种架构特别适用于机器翻译等需要输入和输出序列的任务。
- 例如,经典的机器翻译模型如Google的翻译系统使用了标准的Transformer架构。
- T5(Text-to-Text Transfer Transformer) 是一种典型的Encoder-Decoder架构,它将所有任务都统一表示为“文本到文本”的形式,涵盖了文本分类、机器翻译、文本生成等任务。
2. Encoder-only Transformer
Encoder-only Transformer模型专注于仅使用编码器部分,用于对输入序列进行表示学习。这类模型通常用于需要对输入文本进行理解的任务,如文本分类、情感分析和问答系统。
- BERT(Bidirectional Encoder Representations from Transformers) 是典型的Encoder-only模型,通过双向的上下文学习,极大提高了模型的语言理解能力。
3. Decoder-only Transformer
与Encoder-only模型相反,Decoder-only Transformer模型专注于生成任务,通常仅依赖解码器部分。它适用于文本生成、对话系统等任务。
- GPT(Generative Pre-trained Transformer) 是代表性的Decoder-only模型,它通过无监督的语言建模任务进行预训练,并在生成类任务中表现出色,如文本生成和对话生成。
5. 轻量级Transformer
轻量级Transformer(Lightweight Transformer) 主要用于降低Transformer在计算和内存上的开销,适用于边缘设备或资源受限的场景。轻量级变体通常通过减少模型参数、优化注意力机制或通过网络剪枝等技术来实现高效推理。
- ALBERT(A Lite BERT) 通过共享权重、降低参数量来大幅减少计算开销。
- DistilBERT通过知识蒸馏技术,将BERT压缩为更小的版本,同时保持较高的性能。
6. 视觉Transformer(Vision Transformer, ViT)
虽然最初的Transformer是为NLP任务设计的,但它也在计算机视觉中取得了突破。**视觉Transformer(Vision Transformer, ViT)**通过将图像分割成一系列“补丁”(patch),然后像处理文本序列一样处理图像数据,在图像分类、检测等任务中表现优异。
- ViT 是视觉Transformer的代表,它显示了在大规模预训练下,Transformer在视觉任务中可以达到与卷积神经网络(CNN)相媲美甚至超越的性能。
7. 多模态Transformer
多模态Transformer模型能够处理多种不同类型的数据,如文本、图像、音频等,适用于需要同时理解多个模态的任务,如视觉问答(Visual Question Answering, VQA)和图像字幕生成(Image Captioning)。
- VilBERT 是多模态Transformer的典型例子,它能够在视觉和语言数据之间进行交互式理解,从而在多模态任务中表现出色。
8. 长序列Transformer
传统的Transformer模型在处理长序列数据时,计算复杂度较高,注意力机制需要处理每一对输入序列的关系,导致资源需求巨大。因此,研究者们提出了多种改进模型来高效处理长序列。
- Longformer 通过局部注意力机制降低了处理长序列的复杂度,能够处理比标准Transformer更长的输入序列。
- Reformer 使用可逆网络和局部敏感哈希(LSH Attention)来减少内存和计算需求。
9. 自监督学习的Transformer
自监督学习已经成为Transformer的重要趋势之一。通过自监督学习,模型可以在大量未标注数据上进行预训练,然后在特定任务上进行微调。
- BERT 和 GPT 等模型都依赖自监督学习策略,例如通过掩盖部分输入或预测下一个单词来训练模型。