关于迹、相关系数的矩阵变换推导

1. 问题

对于一个矩阵 D = [ d 1 ; d 2 ; …   ; d n ] ∈ R n × l D = [d_1;d_2;\dots;d_n] \in R^{n \times l} D=[d1;d2;;dn]Rn×l, 其 相关矩阵为 C ∈ R n × n C \in R^{n \times n} CRn×n, 是否有以下表达式成立(经第2部分推导, 基 本 成 立 , 最 正 确 的 见 式 3 \textcolor{red}{基本成立,最正确的见式3} 3):
t r [ D ( P − C ) D T ] = ∑ i , j c i j ∥ d i − d j ∥ 2 (1) tr[D(P-C)D^T] =\sum_{i,j} c_{ij} \|d_i-d_j\|^2 \tag 1 tr[D(PC)DT]=i,jcijdidj2(1)

t r [ D ( P − C ) D T ] = ∑ i = 1 n { 1 2 ∑ p , q l C p q [ d i c p − d i c q ] 2 } (2) tr[D(P-C)D^T] = \sum_{i=1}^n \{ \frac{1}{2}\sum_{p,q}^lC_{pq}[d_ic_p-d_ic_q]^2 \} \tag 2 tr[D(PC)DT]=i=1n{21p,qlCpq[dicpdicq]2}(2)

其中C是对称矩阵, P = d i a g ( C × 1 n × 1 ) ∈ R n × n P=diag(C\times 1^{n \times 1}) \in R^{n \times n} P=diag(C×1n×1)Rn×n表示C按行累加形成的列向量,构成的对角矩阵。

2. 试着推导公式1


D = [ d 11 d 12 ⋯ d 1 l d 21 d 22 ⋯ d 2 l ⋮ ⋮ ⋱ ⋮ d n 1 d n 2 ⋯ d n l ] , C = [ 1 c 12 ⋯ c 1 n c 21 1 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ 1 ] D=\left[ \begin{matrix} d_{11} & d_{12} & \cdots & d_{1l} \\ d_{21} & d_{22} & \cdots & d_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nl} \\ \end{matrix} \right], C=\left[ \begin{matrix} 1 & c_{12} & \cdots & c_{1n} \\ c_{21} & 1 & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & 1 \\ \end{matrix} \right] D=d11d21dn1d12d22dn2d1ld2ldnl,C=1c21cn1c121cn2c1nc2n1

D T = [ d 11 d 21 ⋯ d n 1 d 12 d 22 ⋯ d n 2 ⋮ ⋮ ⋱ ⋮ d 1 l d 2 l ⋯ d n l ] , P = [ ∑ j = 1 n c 1 j 0 ⋯ 0 0 ∑ j = 1 n c 2 j ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ ∑ j = 1 n c n j ] , D^T=\left[ \begin{matrix} d_{11} & d_{21} & \cdots & d_{n1} \\ d_{12} & d_{22} & \cdots & d_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1l} & d_{2l} & \cdots & d_{nl} \\ \end{matrix} \right] , \\ P=\left[ \begin{matrix} \sum_{j=1}^n c_{1j} & 0 & \cdots & 0 \\ 0 & \sum_{j=1}^n c_{2j} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{j=1}^n c_{nj} \\ \end{matrix} \right],\\ DT=d11d12d1ld21d22d2ldn1dn2dnlP=j=1nc1j000j=1nc2j000j=1ncnj,

从右侧开始:
∑ i , j c i j ∥ d i − d j ∥ 2 = ∑ i , j c i j ∥ d i − d j ∥ 2 2 = ∑ i , j c i j ∑ k = 1 l ( d i k − d j k ) 2 = ∑ i = 1 n ∑ j = 1 n c i j ∑ k = 1 l ( d i k − d j k ) 2 \sum_{i,j} c_{ij} \|d_i-d_j\|^2=\sum_{i,j} c_{ij} \|d_i-d_j\|_2^2 \\ =\sum_{i,j} c_{ij} \sum_{k=1}^l(d_{ik}-d_{jk})^2\\ =\sum_{i=1}^n \sum_{j=1}^n c_{ij} \sum_{k=1}^l(d_{ik}-d_{jk})^2\\ i,jcijdidj2=i,jcijdidj22=i,jcijk=1l(dikdjk)2=i=1nj=1ncijk=1l(dikdjk)2
左侧:
t r [ D ( P − C ) D T ] 无 法 直 接 运 算 , 试 着 更 正 为 : t r [ D T ( P − C ) D ] tr[D(P-C)D^T] 无法直接运算,试着更正为:tr[D^T(P-C)D] tr[D(PC)DT]tr[DT(PC)D]

t r [ D T ( P − C ) D ] = t r [ D T P D − D T C D ] = t r ( D T P D ) − t r ( D T C D ) tr[D^T(P-C)D] \\ =tr[D^TPD-D^TCD] \\ =tr(D^TPD)-tr(D^TCD)\\ tr[DT(PC)D]=tr[DTPDDTCD]=tr(DTPD)tr(DTCD)

D T P = [ d 11 d 21 ⋯ d n 1 d 12 d 22 ⋯ d n 2 ⋮ ⋮ ⋱ ⋮ d 1 l d 2 l ⋯ d n l ] [ ∑ j = 1 n c 1 j 0 ⋯ 0 0 ∑ j = 1 n c 2 j ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ ∑ j = 1 n c n j ] = [ d 11 ∑ j = 1 n c 1 j d 21 ∑ j = 1 n c 2 j ⋯ d n 1 ∑ j = 1 n c n j d 12 ∑ j = 1 n c 1 j d 22 ∑ j = 1 n c 2 j ⋯ d n 2 ∑ j = 1 n c n j ⋮ ⋮ ⋱ ⋮ d 1 l ∑ j = 1 n c 1 j d 2 l ∑ j = 1 n c 2 j ⋯ d n l ∑ j = 1 n c n j ] D^TP = \left[ \begin{matrix} d_{11} & d_{21} & \cdots & d_{n1} \\ d_{12} & d_{22} & \cdots & d_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1l} & d_{2l} & \cdots & d_{nl} \\ \end{matrix} \right] \left[ \begin{matrix} \sum_{j=1}^n c_{1j} & 0 & \cdots & 0 \\ 0 & \sum_{j=1}^n c_{2j} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sum_{j=1}^n c_{nj} \\ \end{matrix} \right] \\ =\left[ \begin{matrix} d_{11}\sum_{j=1}^n c_{1j} & d_{21}\sum_{j=1}^n c_{2j} & \cdots & d_{n1}\sum_{j=1}^n c_{nj} \\ d_{12}\sum_{j=1}^n c_{1j} & d_{22}\sum_{j=1}^n c_{2j} & \cdots & d_{n2}\sum_{j=1}^n c_{nj} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1l}\sum_{j=1}^n c_{1j} & d_{2l}\sum_{j=1}^n c_{2j} & \cdots & d_{nl}\sum_{j=1}^n c_{nj} \\ \end{matrix} \right] DTP=d11d12d1ld21d22d2ldn1dn2dnlj=1nc1j000j=1nc2j000j=1ncnj=d11j=1nc1jd12j=1nc1jd1lj=1nc1jd21j=1nc2jd22j=1nc2jd2lj=1nc2jdn1j=1ncnjdn2j=1ncnjdnlj=1ncnj
t r ( D T P D ) = t r ( [ d 11 ∑ j = 1 n c 1 j d 21 ∑ j = 1 n c 2 j ⋯ d n 1 ∑ j = 1 n c n j d 12 ∑ j = 1 n c 1 j d 22 ∑ j = 1 n c 2 j ⋯ d n 2 ∑ j = 1 n c n j ⋮ ⋮ ⋱ ⋮ d 1 l ∑ j = 1 n c 1 j d 2 l ∑ j = 1 n c 2 j ⋯ d n l ∑ j = 1 n c n j ] [ d 11 d 12 ⋯ d 1 l d 21 d 22 ⋯ d 2 l ⋮ ⋮ ⋱ ⋮ d n 1 d n 2 ⋯ d n l ] ) = d 11 2 ∑ j = 1 n c 1 j + d 21 2 ∑ j = 1 n c 2 j + ⋯ + d n 1 2 ∑ j = 1 n c n j + d 12 2 ∑ j = 1 n c 1 j + d 22 2 ∑ j = 1 n c 2 j + ⋯ + d n 2 2 ∑ j = 1 n c n j + … + d 1 l 2 ∑ j = 1 n c 1 j + d 2 l 2 ∑ j = 1 n c 2 j + ⋯ + d n l 2 ∑ j = 1 n c n j = ∑ j = 1 n c 1 j ( d 11 2 + d 12 2 + ⋯ + d 1 l 2 ) + ∑ j = 1 n c 2 j ( d 21 2 + d 22 2 + ⋯ + d 2 l 2 ) + … + ∑ j = 1 n c n j ( d n 1 2 + d n 2 2 + ⋯ + d n l 2 ) tr(D^TPD)=tr( \left[ \begin{matrix} d_{11}\sum_{j=1}^n c_{1j} & d_{21}\sum_{j=1}^n c_{2j} & \cdots & d_{n1}\sum_{j=1}^n c_{nj} \\ d_{12}\sum_{j=1}^n c_{1j} & d_{22}\sum_{j=1}^n c_{2j} & \cdots & d_{n2}\sum_{j=1}^n c_{nj} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1l}\sum_{j=1}^n c_{1j} & d_{2l}\sum_{j=1}^n c_{2j} & \cdots & d_{nl}\sum_{j=1}^n c_{nj} \\ \end{matrix} \right] \left[ \begin{matrix} d_{11} & d_{12} & \cdots & d_{1l} \\ d_{21} & d_{22} & \cdots & d_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nl} \\ \end{matrix} \right] )\\ =d_{11}^2\sum_{j=1}^n c_{1j}+d_{21}^2\sum_{j=1}^n c_{2j} +\dots+d_{n1}^2\sum_{j=1}^n c_{nj} \\ +d_{12}^2\sum_{j=1}^n c_{1j}+d_{22}^2\sum_{j=1}^n c_{2j} +\dots+d_{n2}^2\sum_{j=1}^n c_{nj} \\ +\dots \\ +d_{1l}^2\sum_{j=1}^n c_{1j}+d_{2l}^2\sum_{j=1}^n c_{2j} +\dots+d_{nl}^2\sum_{j=1}^n c_{nj} \\ =\sum_{j=1}^n c_{1j}(d_{11}^2+d_{12}^2+\dots+d_{1l}^2) \\ +\sum_{j=1}^n c_{2j}(d_{21}^2+d_{22}^2+\dots+d_{2l}^2) \\ +\dots \\ +\sum_{j=1}^n c_{nj}(d_{n1}^2+d_{n2}^2+\dots+d_{nl}^2) \\ tr(DTPD)=tr(d11j=1nc1jd12j=1nc1jd1lj=1nc1jd21j=1nc2jd22j=1nc2jd2lj=1nc2jdn1j=1ncnjdn2j=1ncnjdnlj=1ncnjd11d21dn1d12d22dn2d1ld2ldnl)=d112j=1nc1j+d212j=1nc2j++dn12j=1ncnj+d122j=1nc1j+d222j=1nc2j++dn22j=1ncnj++d1l2j=1nc1j+d2l2j=1nc2j++dnl2j=1ncnj=j=1nc1j(d112+d122++d1l2)+j=1nc2j(d212+d222++d2l2)++j=1ncnj(dn12+dn22++dnl2)

D T C = [ d 11 d 21 ⋯ d n 1 d 12 d 22 ⋯ d n 2 ⋮ ⋮ ⋱ ⋮ d 1 l d 2 l ⋯ d n l ] [ 1 c 12 ⋯ c 1 n c 21 1 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ 1 ] = [ ∑ s = 1 n d s 1 c s 1 ∑ s = 1 n d s 1 c s 2 ⋯ ∑ s = 1 n d s 1 c s n ∑ s = 1 n d s 2 c s 1 ∑ s = 1 n d s 2 c s 2 ⋯ ∑ s = 1 n d s 2 c s n ⋮ ⋮ ⋱ ⋮ ∑ s = 1 n d s l c s 1 ∑ s = 1 n d s l c s 2 ⋯ ∑ s = 1 n d s l c s n ] D^TC = \left[ \begin{matrix} d_{11} & d_{21} & \cdots & d_{n1} \\ d_{12} & d_{22} & \cdots & d_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1l} & d_{2l} & \cdots & d_{nl} \\ \end{matrix} \right] \left[ \begin{matrix} 1 & c_{12} & \cdots & c_{1n} \\ c_{21} & 1 & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & 1 \\ \end{matrix} \right]\\ =\left[ \begin{matrix} \sum_{s=1}^n d_{s1}c_{s1} & \sum_{s=1}^n d_{s1}c_{s2} & \cdots & \sum_{s=1}^n d_{s1}c_{sn} \\ \sum_{s=1}^n d_{s2}c_{s1} & \sum_{s=1}^n d_{s2}c_{s2} & \cdots & \sum_{s=1}^n d_{s2}c_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{s=1}^n d_{sl}c_{s1} & \sum_{s=1}^n d_{sl}c_{s2} & \cdots & \sum_{s=1}^n d_{sl}c_{sn} \\ \end{matrix} \right] DTC=d11d12d1ld21d22d2ldn1dn2dnl1c21cn1c121cn2c1nc2n1=s=1nds1cs1s=1nds2cs1s=1ndslcs1s=1nds1cs2s=1nds2cs2s=1ndslcs2s=1nds1csns=1nds2csns=1ndslcsn
t r ( D T C D ) = t r ( [ ∑ s = 1 n d s 1 c s 1 ∑ s = 1 n d s 1 c s 2 ⋯ ∑ s = 1 n d s 1 c s n ∑ s = 1 n d s 2 c s 1 ∑ s = 1 n d s 2 c s 2 ⋯ ∑ s = 1 n d s 2 c s n ⋮ ⋮ ⋱ ⋮ ∑ s = 1 n d s l c s 1 ∑ s = 1 n d s l c s 2 ⋯ ∑ s = 1 n d s l c s n ] [ d 11 d 12 ⋯ d 1 l d 21 d 22 ⋯ d 2 l ⋮ ⋮ ⋱ ⋮ d n 1 d n 2 ⋯ d n l ] ) = d 11 ∑ s = 1 n d s 1 c s 1 + d 21 ∑ s = 1 n d s 1 c s 2 + ⋯ + d n 1 ∑ s = 1 n d s 1 c s n + d 12 ∑ s = 1 n d s 2 c s 1 + d 22 ∑ s = 1 n d s 2 c s 2 + ⋯ + d n 2 ∑ s = 1 n d s 2 c s n + … + d 1 l ∑ s = 1 n d s l c s 1 + d 2 l ∑ s = 1 n d s l c s 2 + ⋯ + d n l ∑ s = 1 n d s l c s n tr(D^TCD)=tr( \left[ \begin{matrix} \sum_{s=1}^n d_{s1}c_{s1} & \sum_{s=1}^n d_{s1}c_{s2} & \cdots & \sum_{s=1}^n d_{s1}c_{sn} \\ \sum_{s=1}^n d_{s2}c_{s1} & \sum_{s=1}^n d_{s2}c_{s2} & \cdots & \sum_{s=1}^n d_{s2}c_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{s=1}^n d_{sl}c_{s1} & \sum_{s=1}^n d_{sl}c_{s2} & \cdots & \sum_{s=1}^n d_{sl}c_{sn} \\ \end{matrix} \right] \left[ \begin{matrix} d_{11} & d_{12} & \cdots & d_{1l} \\ d_{21} & d_{22} & \cdots & d_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & d_{nl} \\ \end{matrix} \right] )\\ =d_{11}\sum_{s=1}^n d_{s1} c_{s1}+d_{21}\sum_{s=1}^n d_{s1} c_{s2}+\dots+d_{n1}\sum_{s=1}^n d_{s1}c_{sn} \\ +d_{12}\sum_{s=1}^n d_{s2} c_{s1}+d_{22}\sum_{s=1}^n d_{s2} c_{s2} +\dots+d_{n2}\sum_{s=1}^n d_{s2}c_{sn} \\ +\dots \\ +d_{1l}\sum_{s=1}^n d_{sl} c_{s1}+d_{2l}\sum_{s=1}^n d_{sl} c_{s2} +\dots+d_{nl}\sum_{s=1}^n d_{sl}c_{sn} \\ tr(DTCD)=tr(s=1nds1cs1s=1nds2cs1s=1ndslcs1s=1nds1cs2s=1nds2cs2s=1ndslcs2s=1nds1csns=1nds2csns=1ndslcsnd11d21dn1d12d22dn2d1ld2ldnl)=d11s=1nds1cs1+d21s=1nds1cs2++dn1s=1nds1csn+d12s=1nds2cs1+d22s=1nds2cs2++dn2s=1nds2csn++d1ls=1ndslcs1+d2ls=1ndslcs2++dnls=1ndslcsn


t r [ D T ( P − C ) D ] = t r ( D T P D ) − t r ( D T C D ) = ∑ j = 1 n c 1 j ( d 11 2 + d 12 2 + ⋯ + d 1 l 2 ) + ∑ j = 1 n c 2 j ( d 21 2 + d 22 2 + ⋯ + d 2 l 2 ) + … + ∑ j = 1 n c n j ( d n 1 2 + d n 2 2 + ⋯ + d n l 2 ) − ( d 11 ∑ s = 1 n d s 1 c s 1 + d 21 ∑ s = 1 n d s 1 c s 2 + ⋯ + d n 1 ∑ s = 1 n d s 1 c s n + d 12 ∑ s = 1 n d s 2 c s 1 + d 22 ∑ s = 1 n d s 2 c s 2 + ⋯ + d n 2 ∑ s = 1 n d s 2 c s n + … + d 1 l ∑ s = 1 n d s l c s 1 + d 2 l ∑ s = 1 n d s l c s 2 + ⋯ + d n l ∑ s = 1 n d s l c s n ) = ∑ j = 1 n c 1 j ( d 11 2 + d 12 2 + ⋯ + d 1 l 2 − ∑ k = 1 l d j k d 1 k ) + ∑ j = 1 n c 2 j ( d 21 2 + d 22 2 + ⋯ + d 2 l 2 − ∑ k = 1 l d j k d 2 k ) + … + ∑ j = 1 n c n j ( d n 1 2 + d n 2 2 + ⋯ + d n l 2 − ∑ k = 1 l d j k d n k ) = ∑ i = 1 n ∑ j = 1 n c i j ( d i 1 2 + d i 2 2 + ⋯ + d i l 2 − ∑ k = 1 l d j k d i k ) = ∑ i = 1 n ∑ j = 1 n c i j ( ∑ k = 1 l d i k 2 − ∑ k = 1 l d j k d i k ) = ∑ i = 1 n ∑ j = 1 n c i j ∑ k = 1 l ( d i k 2 − d j k d i k ) tr[D^T(P-C)D] \\ =tr(D^TPD)-tr(D^TCD)\\ =\sum_{j=1}^n c_{1j}(d_{11}^2+d_{12}^2+\dots+d_{1l}^2) \\ +\sum_{j=1}^n c_{2j}(d_{21}^2+d_{22}^2+\dots+d_{2l}^2) \\ +\dots \\ +\sum_{j=1}^n c_{nj}(d_{n1}^2+d_{n2}^2+\dots+d_{nl}^2) \\ -( d_{11}\sum_{s=1}^n d_{s1} c_{s1}+d_{21}\sum_{s=1}^n d_{s1} c_{s2}+\dots+d_{n1}\sum_{s=1}^n d_{s1}c_{sn} \\ +d_{12}\sum_{s=1}^n d_{s2} c_{s1}+d_{22}\sum_{s=1}^n d_{s2} c_{s2} +\dots+d_{n2}\sum_{s=1}^n d_{s2}c_{sn} \\ +\dots \\ +d_{1l}\sum_{s=1}^n d_{sl} c_{s1}+d_{2l}\sum_{s=1}^n d_{sl} c_{s2} +\dots+d_{nl}\sum_{s=1}^n d_{sl}c_{sn}) \\ =\sum_{j=1}^n c_{1j}(d_{11}^2+d_{12}^2+\dots+d_{1l}^2-\sum_{k=1}^l d_{jk}d_{1k}) \\ +\sum_{j=1}^n c_{2j}(d_{21}^2+d_{22}^2+\dots+d_{2l}^2-\sum_{k=1}^l d_{jk}d_{2k}) \\ +\dots \\ +\sum_{j=1}^n c_{nj}(d_{n1}^2+d_{n2}^2+\dots+d_{nl}^2-\sum_{k=1}^l d_{jk}d_{nk}) \\ =\sum_{i=1}^n\sum_{j=1}^n c_{ij}(d_{i1}^2+d_{i2}^2+\dots+d_{il}^2-\sum_{k=1}^l d_{jk}d_{ik}) \\ =\sum_{i=1}^n\sum_{j=1}^n c_{ij}(\sum_{k=1}^l d_{ik}^2-\sum_{k=1}^l d_{jk}d_{ik}) \\ =\sum_{i=1}^n\sum_{j=1}^n c_{ij}\sum_{k=1}^l (d_{ik}^2- d_{jk}d_{ik}) \\ tr[DT(PC)D]=tr(DTPD)tr(DTCD)=j=1nc1j(d112+d122++d1l2)+j=1nc2j(d212+d222++d2l2)++j=1ncnj(dn12+dn22++dnl2)(d11s=1nds1cs1+d21s=1nds1cs2++dn1s=1nds1csn+d12s=1nds2cs1+d22s=1nds2cs2++dn2s=1nds2csn++d1ls=1ndslcs1+d2ls=1ndslcs2++dnls=1ndslcsn)=j=1nc1j(d112+d122++d1l2k=1ldjkd1k)+j=1nc2j(d212+d222++d2l2k=1ldjkd2k)++j=1ncnj(dn12+dn22++dnl2k=1ldjkdnk)=i=1nj=1ncij(di12+di22++dil2k=1ldjkdik)=i=1nj=1ncij(k=1ldik2k=1ldjkdik)=i=1nj=1ncijk=1l(dik2djkdik)
由于矩阵C中 C i j = C j i C_{ij}=C_{ji} Cij=Cji,所以有:

2 t r [ D T ( P − C ) D ] = 2 ∑ i = 1 n ∑ j = 1 n c i j ∑ k = 1 l ( d i k 2 − d j k d i k ) = ∑ i = 1 n ∑ j = 1 n c i j ∑ k = 1 l ( d i k 2 + d j k 2 − 2 d i k d j k ) = ∑ i = 1 n ∑ j = 1 n c i j ∑ k = 1 l ( d i k − d j k ) 2 = ∑ i , j c i j ∥ d i − d j ∥ 2 2tr[D^T(P-C)D] \\ =2\sum_{i=1}^n\sum_{j=1}^n c_{ij}\sum_{k=1}^l (d_{ik}^2- d_{jk}d_{ik}) \\ =\sum_{i=1}^n\sum_{j=1}^n c_{ij}\sum_{k=1}^l (d_{ik}^2+d_{jk}^2- 2 d_{ik}d_{jk}) \\ =\sum_{i=1}^n\sum_{j=1}^n c_{ij}\sum_{k=1}^l (d_{ik}-d_{jk})^2 \\ =\sum_{i,j} c_{ij} \|d_i-d_j\|^2 2tr[DT(PC)D]=2i=1nj=1ncijk=1l(dik2djkdik)=i=1nj=1ncijk=1l(dik2+djk22dikdjk)=i=1nj=1ncijk=1l(dikdjk)2=i,jcijdidj2
所以结论得证,最终表达式应该是:

2 t r [ D T ( P − C ) D ] = ∑ i , j c i j ∥ d i − d j ∥ 2 2 (3) 2tr[D^T(P-C)D] =\sum_{i,j} c_{ij} \|d_i-d_j\|_2^2 \tag 3 2tr[DT(PC)D]=i,jcijdidj22(3)
注意的是:如果 d i d_i di 是列向量,则是上式(转置项在前),如果是行向量,则是下式(转置项在后),实际上二者在最初的表达时,通过一个转置即可实现转换,所以结果有差异。

在形式表达式,参考下:
在这里插入图片描述

3.对于公式2的推导

由于公式2和公式1及公式3在意义上差不多,所以可以简单的认为公式2也是成立的。

4. 公式理解

  • C i j C_{ij} Cij表示按类似皮尔逊方法获得的相关系数,取值范围[-1,1], 1为正相关,-1为负相关。
  • C i j = 1 C_{ij}=1 Cij=1时,表示正相关,这个时候要min化,则 d i − d j d_i-d_j didj应尽可能小,即前者越接近,输出应越接近。
  • C i j = − 1 C_{ij}=-1 Cij=1时,表示负相关,这个时候要min化,则 d i − d j d_i-d_j didj应尽可能大,即前者越不像,输出也应越不像。
  • C i j C_{ij} Cij是指相关系数,可以用皮尔逊相关系数进行计算,也可以用其他方式。
    在这里插入图片描述

    在这里插入图片描述
    其中t是一个常数,通常设置为1,参:Multi-label feature selection via manifold regularization and dependence maximization[黄睿]

5. 问题

公式1的推导,是从结论反向推导的。那如果是拿到等式的一边,怎么能得出另一边呢???这个太难了,感觉,不知道各位是否有好的办法。欢迎留言区评论或私信讨论,谢谢!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值