综述论文 | 多模态视觉大模型

两篇文章分别概述了视觉语言指令调优在多模态大型语言模型中的重要性,以及如何通过数据集设计和模态对齐方法来提升性能。第一篇介绍了数据构建流程,第二篇则对模态对齐方法进行了分类和分析。
摘要由CSDN通过智能技术生成

Vision-Language Instruction Tuning: A Review and Analysis

https://arxiv.org/pdf/2311.08172.pdf

https://github.com/palchenli/VL-Instruction-Tuning

指令调优是大型语言模型(LLMs)的一个重要的有监督训练阶段,旨在增强LLMs执行指令和适应用户偏好的能力。随着多模态数据被纳入LLMs、不断增加,人们对视觉语言指令调优的性能越来越感兴趣,因为相对于纯文本指令,它呈现出更复杂的特征。

本文系统回顾了多模态LLMs中最新的视觉语言指令调优设置和数据集,并总结了高质量视觉语言调优数据应具备的特征。将这些特征视为构建视觉语言指令数据的基本原则,并提出一个完整的构建流水线,包括数据收集、指令生成和质量控制模块,其中融入了精心设计的指令属性评估指标。基于构建的指令数据对三个广泛使用的多模态LLMs进行了视觉语言指令调优,并进行广泛的实验来验证本文中提出的构建原则的合理性。


How to Bridge the Gap between Modalities: A Comprehensive Survey on Multimodal Large Language Model

https://arxiv.org/pdf/2311.07594.pdf

本综述论文探讨了多模态大型语言模型(MLLMs),它将GPT-4等大型语言模型与文本和视觉等多模态数据进行整合。MLLMs展示了生成图像叙事和回答基于图像的问题等能力,弥合了实现真实世界人机交互的差距,并暗示了通往人工智能的潜在路径。然而,MLLMs在处理多模态语义差异方面仍面临挑战,可能导致错误生成,给社会带来潜在风险。

选择合适的模态对齐方法至关重要,因为不恰当的方法可能需要更多的参数,但性能改进有限。本文旨在探索LLMs的模态对齐方法及其现有能力。实施模态对齐使LLMs能够解决环境问题并提高可访问性。

本研究将MLLMs中现有的模态对齐方法分为四组进行调查:(1)多模态转换器,将数据转换为LLMs可以理解的形式;(2)多模态感知器,改进LLMs感知不同类型数据的能力;(3)工具辅助,将数据转换为一种常见格式,通常是文本;(4)数据驱动方法,教导LLMs理解数据集中特定类型的数据。这个领域仍处于探索和实验阶段,组织和更新各种现有的多模态信息对齐研究方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值