高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程

文章介绍了广义积分的概念,包括无穷区间上的积分和无界函数的瑕积分,并探讨了定积分在几何问题中的应用,如旋转体的体积和侧面积计算。此外,还讨论了常微分方程的基本概念、解、通解和特解,以及如何处理可分离变量和一阶线性微分方程。
摘要由CSDN通过智能技术生成

目录

广义积分

无穷区间上的积分

无界函数的广义积分(瑕积分) 

定积分几何应用

定积分微元法

旋转体的体积、侧面积

定积分求曲线弧长

常微分方程

基本概念

通解

特解

可分离变量的微分方程

一阶微分方程-齐次方程

一阶线性微分方程


广义积分

要考虑无穷区间上的“积分”,或是无界函数的“积分”。

无穷区间上的积分

设函数f(x)定义在[a,+\infty )上,且在任意一个有限区间[a,b] (b>a) 上可积,我们称

\underset{b \to +\infty }{\lim}\int_{a}^{b}f(x)dx

为函数f(x)在无穷区间[a,+\infty )上的广义积分

记作 \int_{a}^{+\infty }f(x)dx,即

\int_{a}^{+\infty }f(x)dx=\underset{b \to +\infty }{\lim}\int_{a}^{b}f(x)dx

无界函数的广义积分(瑕积分) 

设对任意\varepsilon >0,且b-\varepsilon >a,f(x)在区间[a,b-\varepsilon ]上可积,又\underset{x \to b}{\lim}f(x)= \infty,(b为瑕点),则称极限

\underset{\varepsilon \to 0^+}{\lim}\int_{a}^{b-\varepsilon }f(x)dx

为无界函数f(x)在区间[a,b)上的瑕积分,即

1.\int_{a}^{b}f(x)dx=\underset{\varepsilon \to0^+}{\lim}\int_{a}^{b-\varepsilon }f(x)dx

若极限存在,则称瑕积分\int_{a}^{b}f(x)dx收敛,并称该极限值为瑕积分的值;否则称瑕积分发散。

2.\int_{a}^{b}f(x)dx=\underset{A \to 0^-}{\lim}\int_{a+A}^{b}f(x)dx

注意:\varepsilon表示一个无限接近0的很小很小的正数。

定积分几何应用

定积分微元法

例题 

旋转体的体积、侧面积

求由曲线y=f(x)及直线x=a,x=b与x轴所围成的曲边梯形绕x轴旋转一周所围成的旋转体体积。

在[a,b]任取一个微小区间[x,x+dx],对应该小区间的小薄片可以近似于以f(x)为半径,以dx为高的薄片圆柱体。

从而,体积微元,dV=\pi y^2dx=\pi f^2(x)dx

所以,该旋转体的体积为V=\pi \int_{a}^{b}f^2(x)dx

求旋转体的薄克法 

求旋转体的侧面积 

\Delta S\approx 2\pi yds

定积分求曲线弧长

分割,化曲为直,最后再结合勾股定理。即,

\begin{matrix} ds &= &\sqrt{(dx)^2+(dy)^2}\: \: \: \: \: \: \: \: \: \\ &= &\sqrt{(dx)^2}+(\frac{dy}{dx})^2\cdot dx^2 \\ &= &dx\cdot \sqrt{1+(\frac{dy}{dx})^2}\: \: \: \: \: \: \: \: \: \\ &= &\sqrt{1+y'^2} dx\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{matrix}

常微分方程

基本概念

含有未知函数导数(或微分)的方程称为微分方程。若微分方程的未知函数仅含有一个自变量,则称为常微分方程

微分方程中所含未知函数的导数(或微分)的最高阶数称为该微分方程的阶数

如果函数y=f(x)满足一个微分方程,则称此函数为该微分方程的

通解

如果微分方程的解中含有相互独立的任意常数个数与微分方程的阶数相同,则称这样的解为通解

例:y''+y'=0,这样的微分方程的解中要出现C_1,C_2才能称为通解。 

特解

在通解中给任意常数以确定的值或根据所给条件确定通解中的任意常数而得到的解称为特解

可分离变量的微分方程

例如:\frac{dy}{dx}=f(x)g(y)\Rightarrow \frac{1}{g(y)}dy=f(x)dx

解法:两边同时积分\int \frac{dy}{g(y)}=\int f(x)dx

得通解G(y)=F(x)+C

一阶微分方程-齐次方程

(x^2+y^2)dx-xydy=0的通解

先化成齐次方程的形式,[1+(\frac{y}{x})^2]dx=\frac{y}{x}dy

写出y'(如果是\frac{x}{y}的形式,则改为x',即u=\frac{x}{y},x'=u+u'y

[1+(\frac{y}{x})^2]\frac{dx}{dx}=\frac{y}{x}\frac{dy}{dx}\Rightarrow 1+(\frac{y}{x})^2=\frac{y}{x}\cdot y'

u=\frac{y}{x},则y'=u+xu',代入原方程,得

1+u^2=u\cdot (u+xu')\Rightarrow 1+u^2=u^2+xu\cdot u'

化简,分离变量,得\frac{1}{x}dx=u\cdot du,两边同时积分,求出即可。

特殊情况

\frac{dy}{dx}=f(ax+by+C)这种情况下就令u=ax+by

例:y'=sin^2(x-y+1)

u=x-y+1

y=x+1-u,y'=1-u'

\therefore 1-u'=sin^2u,cos^2u=u',\frac{1}{cos^2u}du=dx

例:\frac{dy}{dx}=\frac{1}{x-y}+1,令u=x-y

例:\frac{dy}{dx}=(x+y)^2,令u=x+y

一阶线性微分方程


end


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值